一般来说,我看到它是common way to create thread pools via "io_service + thread_group"。它非常适合const大小的线程池。或者只能变大的游泳池。但是我想知道如何在不停止所有io_service的情况下让这样的游泳池更小?
所以我们有shown
// class variables
asio::io_service io_service;
boost::thread_group threads;
asio::io_service::work *work;
// some pool init function
work = new asio::io_service::work(io_service);
int cores_number = boost::thread::hardware_concurrency();
for (std::size_t i = 0; i < cores_number; ++i)
threads.create_thread(boost::bind(&asio::io_service::run, &io_service));
// and now we can simply post tasks
io_service.post(boost::bind(&class_name::an_expensive_calculation, this, 42));
io_service.post(boost::bind(&class_name::a_long_running_task, this, 123));
// and it is really eazy to make pool biger - just call (mutexes may be required)
threads.create_thread(boost::bind(&asio::io_service::run, &io_service));
但是如果我们想从线程池中删除线程呢?我们不能简单地调用threads.remove_thread(thread* thrd);
,因为它不会停止在&asio::io_service::run
(恕我直言)中运行所以我想 - 是否可能以及如何真正从这样的池中删除线程? (不仅仅是打断tham而是等到当前线程任务超出范围)?
的更新 的
这是一些简单的可编译代码:线程池,线程需要生命周期。
#include <stdio.h>
#include <iostream>
#include <fstream>
//Boost
#include <boost/asio.hpp>
#include <boost/thread.hpp>
#include <boost/thread/locks.hpp>
boost::asio::io_service io_service;
boost::asio::io_service::work *work;
boost::thread_group threads;
boost::mutex threads_creation;
int time_limit;
int calculate_the_answer_to_life_the_universe_and_everything(int i)
{
boost::this_thread::sleep(boost::posix_time::milliseconds(i));
std::cout << i << std::endl;
return i;
}
void run(boost::shared_ptr<boost::thread> thread_ptr)
{
try
{
io_service.run();
}
catch(std::exception &e)
{
std::cout << "exeption: " << e.what() << std::endl;
boost::mutex::scoped_lock lock(threads_creation);
threads.remove_thread(thread_ptr.get());
lock.unlock();
std::cout << "thread removed from group" << std::endl;
return;
}
}
void pool_item( int i)
{
boost::packaged_task<int> pt(boost::bind(calculate_the_answer_to_life_the_universe_and_everything, i));
boost::unique_future<int> fi=pt.get_future();
boost::thread *task = new boost::thread(std::move(pt)); // launch task on a thread
if(fi.timed_wait(boost::posix_time::milliseconds(time_limit)))
{
std::cout << "sucsess function returned: " << fi.get() << std::endl;
}
else
{
std::cout << "request took way 2 long!" << std::endl;
std::cout << "current group size:" << threads.size() << std::endl;
boost::shared_ptr<boost::thread> thread;
boost::packaged_task<void> pt(boost::bind(run, thread));
thread = boost::shared_ptr<boost::thread>( new boost::thread(std::move(pt)));
boost::mutex::scoped_lock lock(threads_creation);
threads.add_thread(thread.get());
lock.unlock();
task->join();
throw std::runtime_error("killed joined thread");
}
}
int main()
{
time_limit = 500;
work = new boost::asio::io_service::work(io_service);
int cores_number = boost::thread::hardware_concurrency();
for (std::size_t i = 0; i < cores_number; ++i)
{
boost::shared_ptr<boost::thread> thread;
boost::packaged_task<void> pt(boost::bind(run, thread));
thread = boost::shared_ptr<boost::thread>( new boost::thread(std::move(pt)));
threads.add_thread(thread.get());
}
int i = 800;
io_service.post(boost::bind(pool_item, i));
boost::this_thread::sleep(boost::posix_time::milliseconds(i*2));
std::cout << "thread should be removed by now." << std::endl
<< "group size:" << threads.size() << std::endl;
std::cin.get();
return 0;
}
正如您所见,即使在.remove_thread(ptr);
调用之后,线程池中的线程也未被删除。=(为什么?
更新#2:
不管怎么说,我最终都是服装线程组...
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <set>
//Boost
#include <boost/asio.hpp>
#include <boost/thread.hpp>
#include <boost/thread/locks.hpp>
//cf service interface
//#include <service.hpp>
//cf-server
//#include <server.h>
#include <boost/foreach.hpp>
class thread_group
{
public:
void add( boost::shared_ptr<boost::thread> to_add)
{
boost::mutex::scoped_lock lock(m);
ds_.insert(to_add);
}
void remove( boost::shared_ptr<boost::thread> to_remove)
{
boost::mutex::scoped_lock lock(m);
ds_.erase(to_remove);
}
int size()
{
boost::mutex::scoped_lock lock(m);
return ds_.size();
}
void join_all(boost::posix_time::milliseconds interuption_time=boost::posix_time::milliseconds(1000))
{
boost::mutex::scoped_lock lock(m);
BOOST_FOREACH(boost::shared_ptr<boost::thread> t, ds_)
{
boost::thread interrupter(boost::bind(&thread_group::interupt_thread, this, t, interuption_time));
}
}
private:
std::set< boost::shared_ptr<boost::thread> > ds_;
boost::mutex m;
void interupt_thread(boost::shared_ptr<boost::thread> t, boost::posix_time::milliseconds interuption_time)
{
try
{
if(!t->timed_join(interuption_time))
t->interrupt();
}
catch(std::exception &e)
{
}
}
};
boost::asio::io_service io_service;
boost::asio::io_service::work *work;
thread_group threads;
int time_limit;
int calculate_the_answer_to_life_the_universe_and_everything(int i)
{
boost::this_thread::sleep(boost::posix_time::milliseconds(i));
std::cout << i << std::endl;
return i;
}
void run(boost::shared_ptr<boost::thread> thread_ptr)
{
try
{
io_service.run();
}
catch(std::exception &e)
{
std::cout << "exeption: " << e.what() << std::endl;
threads.remove(thread_ptr);
std::cout << "thread removed from group" << std::endl;
return;
}
}
void pool_item( int i)
{
boost::packaged_task<int> pt(boost::bind(calculate_the_answer_to_life_the_universe_and_everything, i));
boost::unique_future<int> fi=pt.get_future();
boost::thread *task = new boost::thread(std::move(pt)); // launch task on a thread
if(fi.timed_wait(boost::posix_time::milliseconds(time_limit)))
{
std::cout << "sucsess function returned: " << fi.get() << std::endl;
}
else
{
std::cout << "request took way 2 long!" << std::endl;
std::cout << "current group size:" << threads.size() << std::endl;
std::cout << "we want to add thread!" << std::endl;
boost::shared_ptr<boost::thread> thread;
boost::packaged_task<void> pt(boost::bind(run, thread));
threads.add(thread);
std::cout << "thread added" << std::endl
<< "current group size:" << threads.size() << std::endl;
task->join();
throw std::runtime_error("killed joined thread");
}
}
int main()
{
time_limit = 500;
work = new boost::asio::io_service::work(io_service);
int cores_number = boost::thread::hardware_concurrency();
for (std::size_t i = 0; i < cores_number; ++i)
{
boost::shared_ptr<boost::thread> thread;
boost::packaged_task<void> pt(boost::bind(run, thread));
thread = boost::shared_ptr<boost::thread>( new boost::thread(std::move(pt)));
threads.add(thread);
}
int i = 800;
io_service.post(boost::bind(pool_item, i));
boost::this_thread::sleep(boost::posix_time::milliseconds(i*2));
std::cout << "thread should be removed by now." << std::endl
<< "group size:" << threads.size() << std::endl;
std::cin.get();
return 0;
}
答案 0 :(得分:3)
过去我能够通过利用run()
在回调引发异常时退出的事实来实现这一点。如果抛出适当的异常,我调用一个退出线程的实用程序函数,而不是直接在线程中启动run()
:
void RunIOService()
{
try
{
io_service.run();
}
catch(std::exception ex)
{
}
}
然后你所要做的就是安排一个会引发异常的回调:
static void KillThreadCallback()
{
// throw some exception that you catch above
}
io_service.post(&KillThreadCallback);
这将导致执行此回调的线程退出,从而实际上将线程池计数大小降低1.使用此方法,您可以非常轻松地扩展和收缩io_service
线程池。
答案 1 :(得分:1)
可用于干净地关闭I / O服务的一种模式是(使用C ++ 0x lambdas):
void ThreadLoop()
{
while(m_keepRunning) {
try {
io_service.run_one();
} catch(const std::exception& e) {
// error handling
}
}
}
void Stop()
{
// Using C++0x lambdas
io_service.post([=]{ m_keepRunning = false; });
// or
io_service.post(boost::bind(&ThisClass::StopCallback, this));
}
void StopCallback()
{
m_keepRunning = false;
}
m_keepRunning 是成员变量。只应在I / O服务线程中触及。