根据多个布尔字段确定因子或创建新类别字段的最佳方法是什么?在这个例子中,我需要计算药物的独特组合的数量。
> MultPsychMeds
ID OLANZAPINE HALOPERIDOL QUETIAPINE RISPERIDONE
1 A 1 1 0 0
2 B 1 0 1 0
3 C 1 0 1 0
4 D 1 0 1 0
5 E 1 0 0 1
6 F 1 0 0 1
7 G 1 0 0 1
8 H 1 0 0 1
9 I 0 1 1 0
10 J 0 1 1 0
或许另一种说明方式是我需要对这些对进行旋转或交叉制表。最终结果需要看起来像:
Combination Count
OLANZAPINE/HALOPERIDOL 1
OLANZAPINE/QUETIAPINE 3
OLANZAPINE/RISPERIDONE 4
HALOPERIDOL/QUETIAPINE 2
此数据框可以在R中复制:
MultPsychMeds <- structure(list(ID = structure(1:10, .Label = c("A", "B", "C",
"D", "E", "F", "G", "H", "I", "J"), class = "factor"), OLANZAPINE = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L), HALOPERIDOL = c(1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L), QUETIAPINE = c(0L, 1L, 1L, 1L,
0L, 0L, 0L, 0L, 1L, 1L), RISPERIDONE = c(0L, 0L, 0L, 0L, 1L,
1L, 1L, 1L, 0L, 0L)), .Names = c("ID", "OLANZAPINE", "HALOPERIDOL",
"QUETIAPINE", "RISPERIDONE"), class = "data.frame", row.names = c(NA,
-10L))
答案 0 :(得分:8)
以下是使用reshape
和plyr
软件包的一种方法:
library(reshape)
library(plyr)
#Melt into long format
dat.m <- melt(MultPsychMeds, id.vars = "ID")
#Group at the ID level and paste the drugs together with "/"
out <- ddply(dat.m, "ID", summarize, combos = paste(variable[value == 1], collapse = "/"))
#Calculate a table
with(out, count(combos))
x freq
1 HALOPERIDOL/QUETIAPINE 2
2 OLANZAPINE/HALOPERIDOL 1
3 OLANZAPINE/QUETIAPINE 3
4 OLANZAPINE/RISPERIDONE 4
答案 1 :(得分:5)
只是为了好玩,一个基本的R解决方案(可以变成一个oneliner :-)):
data.frame(table(apply(MultPsychMeds[,-1], 1, function(currow){
wc<-which(currow==1)
paste(colnames(MultPsychMeds)[wc+1], collapse="/")
})))
答案 2 :(得分:2)
另一种方式可能是:
subset(
as.data.frame(
with(MultPsychMeds, table(OLANZAPINE, HALOPERIDOL, QUETIAPINE, RISPERIDONE)),
responseName="count"
),
count>0
)
给出了
OLANZAPINE HALOPERIDOL QUETIAPINE RISPERIDONE count
4 1 1 0 0 1
6 1 0 1 0 3
7 0 1 1 0 2
10 1 0 0 1 4
这不是你想要的确切方式,但是快速而简单。
plyr package中有简写:
require(plyr)
count(MultPsychMeds, c("OLANZAPINE", "HALOPERIDOL", "QUETIAPINE", "RISPERIDONE"))
# OLANZAPINE HALOPERIDOL QUETIAPINE RISPERIDONE freq
# 1 0 1 1 0 2
# 2 1 0 0 1 4
# 3 1 0 1 0 3
# 4 1 1 0 0 1