所以numpy有一些方便的功能,可以将几个数组合成一个,例如: hstack和vstack。我想知道是否有类似的东西,但是对角堆叠组件数组?
假设我有N个形状数组(n_i,m_i),我想将它们组合成一个大小的单个数组(sum_ {1,N} n_i,sum_ {1,N} m_i),这样组件数组在结果数组的对角线上形成块。
是的,我知道如何手动解决,例如采用How to "embed" a small numpy array into a predefined block of a large numpy array?中描述的方法。只是想知道是否有更简单的方法。
啊,How can I transform blocks into a blockdiagonal matrix (NumPy)提到scipy.linalg.block_diag()是解决方案,除了我工作站上安装的scipy版本太旧而没有它。还有其他想法吗?
答案 0 :(得分:7)
似乎block_diag
完全符合您的要求。因此,如果由于某种原因你不能更新scipy,那么如果你想简单地定义它,那么这里是来自v0.8.0
的源代码!
def block_diag(*arrs):
"""Create a block diagonal matrix from the provided arrays.
Given the inputs `A`, `B` and `C`, the output will have these
arrays arranged on the diagonal::
[[A, 0, 0],
[0, B, 0],
[0, 0, C]]
If all the input arrays are square, the output is known as a
block diagonal matrix.
Parameters
----------
A, B, C, ... : array-like, up to 2D
Input arrays. A 1D array or array-like sequence with length n is
treated as a 2D array with shape (1,n).
Returns
-------
D : ndarray
Array with `A`, `B`, `C`, ... on the diagonal. `D` has the
same dtype as `A`.
References
----------
.. [1] Wikipedia, "Block matrix",
http://en.wikipedia.org/wiki/Block_diagonal_matrix
Examples
--------
>>> A = [[1, 0],
... [0, 1]]
>>> B = [[3, 4, 5],
... [6, 7, 8]]
>>> C = [[7]]
>>> print(block_diag(A, B, C))
[[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 3 4 5 0]
[0 0 6 7 8 0]
[0 0 0 0 0 7]]
>>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]])
array([[ 1., 0., 0., 0., 0.],
[ 0., 2., 3., 0., 0.],
[ 0., 0., 0., 4., 5.],
[ 0., 0., 0., 6., 7.]])
"""
if arrs == ():
arrs = ([],)
arrs = [np.atleast_2d(a) for a in arrs]
bad_args = [k for k in range(len(arrs)) if arrs[k].ndim > 2]
if bad_args:
raise ValueError("arguments in the following positions have dimension "
"greater than 2: %s" % bad_args)
shapes = np.array([a.shape for a in arrs])
out = np.zeros(np.sum(shapes, axis=0), dtype=arrs[0].dtype)
r, c = 0, 0
for i, (rr, cc) in enumerate(shapes):
out[r:r + rr, c:c + cc] = arrs[i]
r += rr
c += cc
return out