这如何伪造航空器的光线?

时间:2011-08-15 04:35:08

标签: three.js glsl webgl lighting light

我正在尝试阅读本教程:

https://aerotwist.com/tutorials/an-introduction-to-shaders-part-2/

但我无法跟进。基本上,代码通过使用直接在GPU上运行的着色器来创建定向光源。这是代码:

// same name and type as VS
varying vec3 vNormal;

void main() {

    // calc the dot product and clamp
    // 0 -> 1 rather than -1 -> 1
    vec3 light = vec3(0.5,0.2,1.0);

    // ensure it's normalized
    light = normalize(light);

    // calculate the dot product of
    // the light to the vertex normal
    float dProd = max(0.0, dot(vNormal, light));

    // feed into our frag colour
    gl_FragColor = vec4(dProd, dProd, dProd, 1.0);

} 

具体来说,我不理解的是这一行:

float dProd = max(0.0, dot(vNormal, light));

顶点和光的vNormal的点积如何产生方向光。任何人都能以图解方式解释我。我无法得到它。这对我来说有点神奇。我知道在这个顶点着色器中,每个顶点都被传递为一个被称为normal的输入,因为它用“1”表示,然后在上面的片段着色器代码中使用该共享变量。但除此之外,我不明白它是如何运作的。

P.S:我本可以向博客作者询问,但据我所知,他正在度假2周。所以我认为有一些物理或三人经验的人可以告诉我。

1 个答案:

答案 0 :(得分:5)

朗伯反射模型

为了模拟计算机图形中光的反射,使用双向反射分布函数(BRDF)。 BRDF是一种函数,它给出了沿出射方向反射的光与从入射方向入射的光之间的关系。

完美的漫反射曲面具有BRDF,其对于所有入射和出射方向具有相同的值。这大大减少了计算,因此它通常用于模拟漫射表面,因为它在物理上是合理的,即使现实世界中没有纯粹的漫射材料。这种BRDF被称为朗伯反射,因为它符合兰伯特的余弦定律。

朗伯反射通常用作漫反射的模型。此技术使所有闭合多边形(例如3D网格内的三角形)在渲染时在所有方向上均匀地反射光。根据法向量和光矢量之间的角度计算扩散系数。

f_Lambertian = max( 0.0, dot( N, L )

其中N是曲面的法线向量,L是朝向光源的向量。

如何运作

通常,2个向量的 dot 乘积等于2个向量之间角度的余弦乘以两个向量的幅度(长度)。

dot( A, B ) == length( A ) * length( B ) * cos( angle_A_B ) 

接下来,2个单位向量的 dot 乘积等于2个向量之间角度的余弦,因为单位向量的长度为1。

uA = normalize( A )
uB = normalize( B )
cos( angle_A_B ) == dot( uA, uB )

A dot B

如果我们看一下角度-90°和90°之间的 cos(x)函数,那么我们可以看到它在0°的角度下最大为1并且它在90°和-90°的角度下降到0。

cosin in [-90°, 90°]

这种行为正是我们想要的反射模型。当表面的光照和光源的方向在同一方向(角度在0°之间)时,我们想要一个最大的反射。 相反,如果矢量是正交归一化的(它们之间的角度是90°)那么我们想要最小的反射,我们希望在0°和90°的两个边界之间运行平滑连续的功能。

N dot L

如果在顶点着色器中计算光照模型,则会计算图元的每个角的反射。在基元之间,反射根据其重心坐标进行插值。 查看球面上产生的反射:

enter image description here

另见:


WebGL示例:球体上的Lambertian漫反射

(function loadscene() {
  
  var gl, progDraw, vp_size;
  var bufSphere = {};
  
  function render(delteMS){

      Camera.create();
      Camera.vp = vp_size;
          
      gl.viewport( 0, 0, vp_size[0], vp_size[1] );
      gl.enable( gl.DEPTH_TEST );
      gl.clearColor( 0.0, 0.0, 0.0, 1.0 );
      gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT );

      // set up draw shader
      ShaderProgram.Use( progDraw.prog );
      ShaderProgram.SetUniformM44( progDraw.prog, "u_projectionMat44", Camera.Perspective() );
      ShaderProgram.SetUniformM44( progDraw.prog, "u_viewMat44", Camera.LookAt() );
      var modelMat = IdentityMat44()
      modelMat = RotateAxis( modelMat, CalcAng( delteMS, 13.0 ), 0 );
      modelMat = RotateAxis( modelMat, CalcAng( delteMS, 17.0 ), 1 );
      ShaderProgram.SetUniformM44( progDraw.prog, "u_modelMat44", modelMat );
      ShaderProgram.SetUniformF3( progDraw.prog, "u_color", [1.0, 0.5, 0.0] );
      ShaderProgram.SetUniformF3( progDraw.prog, "u_lightDir", [-4.0, 0.0, -1.0] )
      
      // draw scene
      VertexBuffer.Draw( bufSphere );

      requestAnimationFrame(render);
  }
  
  function resize() {
      //vp_size = [gl.drawingBufferWidth, gl.drawingBufferHeight];
      vp_size = [window.innerWidth, window.innerHeight]
      canvas.width = vp_size[0];
      canvas.height = vp_size[1];
  }
  
  function initScene() {
  
      canvas = document.getElementById( "canvas");
      gl = canvas.getContext( "experimental-webgl" );
      if ( !gl )
        return null;
  
      progDraw = {}
      progDraw.prog = ShaderProgram.Create( 
        [ { source : "draw-shader-vs", stage : gl.VERTEX_SHADER },
          { source : "draw-shader-fs", stage : gl.FRAGMENT_SHADER }
        ] );
      if ( !progDraw.prog )
          return null;
      progDraw.inPos = gl.getAttribLocation( progDraw.prog, "inPos" );
      
      // create sphere
      var layer_size = 16, circum_size = 32;
      var rad_circum = 1.0;
      var rad_tube = 0.5;
      var sphere_pts = [];
      sphere_pts.push( 0.0, 0.0, -1.0 );
      for ( var i_l = 1; i_l < layer_size; ++ i_l ) {
          var angH = (1.0 - i_l / layer_size) * Math.PI;
          var h = Math.cos( angH );
          var r = Math.sin( angH );
          for ( var i_c = 0; i_c < circum_size; ++ i_c ) {
              var circumX = Math.cos(2 * Math.PI * i_c / circum_size);
              var circumY = Math.sin(2 * Math.PI * i_c / circum_size);
              sphere_pts.push( r * circumX, r * circumY, h );
          }
      }
      sphere_pts.push( 0.0, 0.0, 1.0 );
      var sphere_inx = [];
      for ( var i_c = 0; i_c < circum_size; ++ i_c ) {
          sphere_inx.push( i_c+1, 0, (i_c+1) % circum_size + 1 )
      } 
      for ( var i_l = 0; i_l < layer_size-2; ++ i_l ) {
          var l1 = i_l * circum_size + 1;
          var l2 = (i_l+1) * circum_size + 1
          for ( var i_c = 0; i_c < circum_size; ++ i_c ) {
              var i_n = (i_c+1) % circum_size;
              sphere_inx.push( l1+i_c, l1+i_n, l2+i_c, l1+i_n, l2+i_n, l2+i_c );
          }
      }
      for ( var i_c = 0; i_c < circum_size; ++ i_c ) {
          var i_start = 1 + (layer_size-2) * circum_size;
          var i_n = (i_c+1) % circum_size;
          sphere_inx.push( i_start + i_c, i_start + i_n, sphere_pts.length/3-1 );
      }
      bufSphere = VertexBuffer.Create(
          [ { data : sphere_pts, attrSize : 3, attrLoc : progDraw.inPos } ],
          sphere_inx );
        
      window.onresize = resize;
      resize();
      requestAnimationFrame(render);
  }
  
  function Fract( val ) { 
      return val - Math.trunc( val );
  }
  function CalcAng( deltaTime, intervall ) {
      return Fract( deltaTime / (1000*intervall) ) * 2.0 * Math.PI;
  }
  function CalcMove( deltaTime, intervall, range ) {
      var pos = self.Fract( deltaTime / (1000*intervall) ) * 2.0
      var pos = pos < 1.0 ? pos : (2.0-pos)
      return range[0] + (range[1] - range[0]) * pos;
  }    
  function EllipticalPosition( a, b, angRag ) {
      var a_b = a * a - b * b
      var ea = (a_b <= 0) ? 0 : Math.sqrt( a_b );
      var eb = (a_b >= 0) ? 0 : Math.sqrt( -a_b );
      return [ a * Math.sin( angRag ) - ea, b * Math.cos( angRag ) - eb, 0 ];
  }
  
  glArrayType = typeof Float32Array !="undefined" ? Float32Array : ( typeof WebGLFloatArray != "undefined" ? WebGLFloatArray : Array );
  
  function IdentityMat44() {
    var m = new glArrayType(16);
    m[0]  = 1; m[1]  = 0; m[2]  = 0; m[3]  = 0;
    m[4]  = 0; m[5]  = 1; m[6]  = 0; m[7]  = 0;
    m[8]  = 0; m[9]  = 0; m[10] = 1; m[11] = 0;
    m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1;
    return m;
  };
  
  function RotateAxis(matA, angRad, axis) {
      var aMap = [ [1, 2], [2, 0], [0, 1] ];
      var a0 = aMap[axis][0], a1 = aMap[axis][1]; 
      var sinAng = Math.sin(angRad), cosAng = Math.cos(angRad);
      var matB = new glArrayType(16);
      for ( var i = 0; i < 16; ++ i ) matB[i] = matA[i];
      for ( var i = 0; i < 3; ++ i ) {
          matB[a0*4+i] = matA[a0*4+i] * cosAng + matA[a1*4+i] * sinAng;
          matB[a1*4+i] = matA[a0*4+i] * -sinAng + matA[a1*4+i] * cosAng;
      }
      return matB;
  }
  
  function Cross( a, b ) { return [ a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0], 0.0 ]; }
  function Dot( a, b ) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; }
  function Normalize( v ) {
      var len = Math.sqrt( v[0] * v[0] + v[1] * v[1] + v[2] * v[2] );
      return [ v[0] / len, v[1] / len, v[2] / len ];
  }
  
  var Camera = {};
  Camera.create = function() {
      this.pos    = [0, 1.5, 0.0];
      this.target = [0, 0, 0];
      this.up     = [0, 0, 1];
      this.fov_y  = 90;
      this.vp     = [800, 600];
      this.near   = 0.5;
      this.far    = 100.0;
  }
  Camera.Perspective = function() {
      var fn = this.far + this.near;
      var f_n = this.far - this.near;
      var r = this.vp[0] / this.vp[1];
      var t = 1 / Math.tan( Math.PI * this.fov_y / 360 );
      var m = IdentityMat44();
      m[0]  = t/r; m[1]  = 0; m[2]  =  0;                              m[3]  = 0;
      m[4]  = 0;   m[5]  = t; m[6]  =  0;                              m[7]  = 0;
      m[8]  = 0;   m[9]  = 0; m[10] = -fn / f_n;                       m[11] = -1;
      m[12] = 0;   m[13] = 0; m[14] = -2 * this.far * this.near / f_n; m[15] =  0;
      return m;
  }
  Camera.LookAt = function() {
      var mz = Normalize( [ this.pos[0]-this.target[0], this.pos[1]-this.target[1], this.pos[2]-this.target[2] ] );
      var mx = Normalize( Cross( this.up, mz ) );
      var my = Normalize( Cross( mz, mx ) );
      var tx = Dot( mx, this.pos );
      var ty = Dot( my, this.pos );
      var tz = Dot( [-mz[0], -mz[1], -mz[2]], this.pos ); 
      var m = IdentityMat44();
      m[0]  = mx[0]; m[1]  = my[0]; m[2]  = mz[0]; m[3]  = 0;
      m[4]  = mx[1]; m[5]  = my[1]; m[6]  = mz[1]; m[7]  = 0;
      m[8]  = mx[2]; m[9]  = my[2]; m[10] = mz[2]; m[11] = 0;
      m[12] = tx;    m[13] = ty;    m[14] = tz;    m[15] = 1; 
      return m;
  } 
  
  var ShaderProgram = {};
  ShaderProgram.Create = function( shaderList ) {
      var shaderObjs = [];
      for ( var i_sh = 0; i_sh < shaderList.length; ++ i_sh ) {
          var shderObj = this.CompileShader( shaderList[i_sh].source, shaderList[i_sh].stage );
          if ( shderObj == 0 )
              return 0;
          shaderObjs.push( shderObj );
      }
      var progObj = this.LinkProgram( shaderObjs )
      if ( progObj != 0 ) {
          progObj.attribIndex = {};
          var noOfAttributes = gl.getProgramParameter( progObj, gl.ACTIVE_ATTRIBUTES );
          for ( var i_n = 0; i_n < noOfAttributes; ++ i_n ) {
              var name = gl.getActiveAttrib( progObj, i_n ).name;
              progObj.attribIndex[name] = gl.getAttribLocation( progObj, name );
          }
          progObj.unifomLocation = {};
          var noOfUniforms = gl.getProgramParameter( progObj, gl.ACTIVE_UNIFORMS );
          for ( var i_n = 0; i_n < noOfUniforms; ++ i_n ) {
              var name = gl.getActiveUniform( progObj, i_n ).name;
              progObj.unifomLocation[name] = gl.getUniformLocation( progObj, name );
          }
      }
      return progObj;
  }
  ShaderProgram.AttributeIndex = function( progObj, name ) { return progObj.attribIndex[name]; } 
  ShaderProgram.UniformLocation = function( progObj, name ) { return progObj.unifomLocation[name]; } 
  ShaderProgram.Use = function( progObj ) { gl.useProgram( progObj ); } 
  ShaderProgram.SetUniformI1  = function( progObj, name, val ) { if(progObj.unifomLocation[name]) gl.uniform1i( progObj.unifomLocation[name], val ); }
  ShaderProgram.SetUniformF1  = function( progObj, name, val ) { if(progObj.unifomLocation[name]) gl.uniform1f( progObj.unifomLocation[name], val ); }
  ShaderProgram.SetUniformF2  = function( progObj, name, arr ) { if(progObj.unifomLocation[name]) gl.uniform2fv( progObj.unifomLocation[name], arr ); }
  ShaderProgram.SetUniformF3  = function( progObj, name, arr ) { if(progObj.unifomLocation[name]) gl.uniform3fv( progObj.unifomLocation[name], arr ); }
  ShaderProgram.SetUniformF4  = function( progObj, name, arr ) { if(progObj.unifomLocation[name]) gl.uniform4fv( progObj.unifomLocation[name], arr ); }
  ShaderProgram.SetUniformM33 = function( progObj, name, mat ) { if(progObj.unifomLocation[name]) gl.uniformMatrix3fv( progObj.unifomLocation[name], false, mat ); }
  ShaderProgram.SetUniformM44 = function( progObj, name, mat ) { if(progObj.unifomLocation[name]) gl.uniformMatrix4fv( progObj.unifomLocation[name], false, mat ); }
  ShaderProgram.CompileShader = function( source, shaderStage ) {
      var shaderScript = document.getElementById(source);
      if (shaderScript)
        source = shaderScript.text;
      var shaderObj = gl.createShader( shaderStage );
      gl.shaderSource( shaderObj, source );
      gl.compileShader( shaderObj );
      var status = gl.getShaderParameter( shaderObj, gl.COMPILE_STATUS );
      if ( !status ) alert(gl.getShaderInfoLog(shaderObj));
      return status ? shaderObj : null;
  } 
  ShaderProgram.LinkProgram = function( shaderObjs ) {
      var prog = gl.createProgram();
      for ( var i_sh = 0; i_sh < shaderObjs.length; ++ i_sh )
          gl.attachShader( prog, shaderObjs[i_sh] );
      gl.linkProgram( prog );
      status = gl.getProgramParameter( prog, gl.LINK_STATUS );
      if ( !status ) alert("Could not initialise shaders");
      gl.useProgram( null );
      return status ? prog : null;
  }
  
  var VertexBuffer = {};
  VertexBuffer.Create = function( attributes, indices ) {
      var buffer = {};
      buffer.buf = [];
      buffer.attr = []
      for ( var i = 0; i < attributes.length; ++ i ) {
          buffer.buf.push( gl.createBuffer() );
          buffer.attr.push( { size : attributes[i].attrSize, loc : attributes[i].attrLoc } );
          gl.bindBuffer( gl.ARRAY_BUFFER, buffer.buf[i] );
          gl.bufferData( gl.ARRAY_BUFFER, new Float32Array( attributes[i].data ), gl.STATIC_DRAW );
      }
      buffer.inx = gl.createBuffer();
      gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, buffer.inx );
      gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, new Uint16Array( indices ), gl.STATIC_DRAW );
      buffer.inxLen = indices.length;
      gl.bindBuffer( gl.ARRAY_BUFFER, null );
      gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, null );
      return buffer;
  }
  VertexBuffer.Draw = function( bufObj ) {
    for ( var i = 0; i < bufObj.buf.length; ++ i ) {
          gl.bindBuffer( gl.ARRAY_BUFFER, bufObj.buf[i] );
          gl.vertexAttribPointer( bufObj.attr[i].loc, bufObj.attr[i].size, gl.FLOAT, false, 0, 0 );
          gl.enableVertexAttribArray( bufObj.attr[i].loc );
      }
      gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, bufObj.inx );
      gl.drawElements( gl.TRIANGLES, bufObj.inxLen, gl.UNSIGNED_SHORT, 0 );
      for ( var i = 0; i < bufObj.buf.length; ++ i )
         gl.disableVertexAttribArray( bufObj.attr[i].loc );
      gl.bindBuffer( gl.ARRAY_BUFFER, null );
      gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, null );
  }
  
  initScene();
  
  })();
html,body {
    height: 100%;
    width: 100%;
    margin: 0;
    overflow: hidden;
}

#gui {
    position : absolute;
    top : 0;
    left : 0;
}
<script id="draw-shader-vs" type="x-shader/x-vertex">
    precision mediump float;
    
    attribute vec3 inPos;
    
    varying vec3 v_normal;

    uniform mat4 u_projectionMat44;
    uniform mat4 u_viewMat44;
    uniform mat4 u_modelMat44;
    
    void main()
    {
        vec3  modelNV = mat3( u_modelMat44 ) * normalize( inPos );
        vec3  normalV = mat3( u_viewMat44 ) * modelNV;
        v_normal      = normalV;

        vec4 modelPos = u_modelMat44 * vec4( inPos, 1.0 );
        vec4 viewPos  = u_viewMat44 * modelPos;
        gl_Position   = u_projectionMat44 * viewPos;
}
</script>
  
<script id="draw-shader-fs" type="x-shader/x-fragment">
    precision mediump float;
    
    varying vec3 v_normal;
    
    uniform vec3 u_lightDir;
    uniform vec3 u_color;

    void main()
    {
        vec3  normalV  = normalize( v_normal );
        vec3  lightV   = normalize( -u_lightDir );
        float NdotL    = max( 0.0, dot( normalV, lightV ) );

        vec3 lightCol  = (0.2 + 0.8 * NdotL) * u_color;
        gl_FragColor   = vec4( lightCol.rgb, 1.0 );
    }
</script>

<canvas id="canvas" style="border: none;" width="100%" height="100%"></canvas>