ZeroDivisionError:浮点除法

时间:2011-08-12 14:38:47

标签: python newtons-method

我有这个代码来解决牛顿的方法。但它给出了零分割错误。我无法弄清楚出了什么问题。谢谢。

import copy

tlist = [0.0, 0.12, 0.16, 0.2, 0.31, 0.34] # list of start time for the phonemes

w = w1 = w2 = w3 = w = 5

def time() :
    frame = 0.04
    for i, start_time in enumerate(tlist) :
        end_time = tlist[i]
        frame = frame * (i + 1)
        poly = poly_coeff(start_time, end_time, frame)
        Newton(poly) 

def poly_coeff(stime, etime, f) :
    """The equation is k6 * u^3 + k5 * u^2 + k4 * u + k0 = 0. Computing the coefficients for this polynomial."""
    """Substituting the required values we get the coefficients."""
    t_u = f
    t0 = stime
    t3 = etime
    t1 = t2 = (stime + etime) / 2
    w0 = w1 = w2 = w3 = w
    k0 = w0 * (t_u - t0)
    k1 = w1 * (t_u - t1)
    k2 = w2 * (t_u - t2)
    k3 = w3 * (t_u - t3)
    k4 = 3 * (k1 - k0)
    k5 = 3 * (k2 - 2 * k1 + k0)
    k6 = k3 - 3 * k2 + 3 * k1 -k0 

    return [[k6,3], [k5,2], [k4,1], [k0,0]]

def poly_differentiate(poly):
    """ Differentiate polynomial. """
    newlist = copy.deepcopy(poly)

    for term in newlist:
        term[0] *= term[1]
        term[1] -= 1

    return newlist

def poly_substitute(poly, x):
    """ Apply value to polynomial. """
    sum = 0.0 

    for term in poly:
        sum += term[0] * (x ** term[1])
    return sum

def Newton(poly):
    """ Returns a root of the polynomial"""
    poly_diff = poly_differentiate(poly) 
    counter = 0
    epsilon = 0.000000000001

    x = float(raw_input("Enter initial guess:"))

    while True:
        x_n = x - (float(poly_substitute(poly, x)) / poly_substitute(poly_diff, x))
        counter += 1
        if abs(x_n - x) < epsilon :
            break
        x = x_n
    print "Number of iterations:", counter
    print "The actual root is:", x_n
    return x_n

if __name__ == "__main__" :
    time()
Enter initial guess:0.5
Traceback (most recent call last):
  File "newton.py", line 79, in <module>
    time()
  File "newton.py", line 18, in time
    Newton(poly) 
  File "newton.py", line 67, in Newton
    x_n = x - (float(poly_substitute(poly, x)) / poly_substitute(poly_diff, x))
ZeroDivisionError: float division

3 个答案:

答案 0 :(得分:6)

你有一个基本的错误:

for i, start_time in enumerate(tlist):
    end_time = tlist[i]

由于enumerate的性质,start_timeend_time具有相同的值。这意味着poly_coeff每次都会返回[[0,3], [0,2], [0,1], [0,0]]。当此结果(通过Newton)传递到poly_differentiate时,结果将为[[0,2], [0,1], [0,0], [0,-1]]

传递给poly_substitute的结果将产生ZERO的总和,因为在将它们求和之前,将所有列表条目乘以term[0](恰好为零)。然后,你除以零。

解决方案(根据您的评论编辑)

使用正确的start_timeend_time值。看起来你想要end_time = tlist[i+1]。边缘条件是在不评估最终列表条目的情况下突破。你真正想要的是:

for i, start_time in enumerate(tlist[:-1]):
    end_time = tlist[i+1]

答案 1 :(得分:3)

我已经复制了你的代码,并尝试稍微调试一下。

通常,这是因为您的代码返回零值,然后尝试在分割期间使用它。

如果您仔细检查您的代码,您会发现以下循环:

for i, start_time in enumerate(tlist) :
        end_time = tlist[i]

会在第一次迭代时给你start_time == 0.0和endTime == 0.0。

这引出了以下一行:

poly = poly_coeff(start_time, end_time, frame)

要归还你:

>>> [[0.0, 3], [0.0, 2], [0.0, 1], [0.2, 0]]

这个原因:

poly_substitute(poly_diff, x)

您正在使用以下循环:

for term in poly:
    sum += term[0] * (x ** term[1])

返回零,因为你只乘以零。

那么你试图在0上删除并得到一个提到的异常。

这意味着如果您要修改代码以安全地检查并将endTime设置为tList [i + 1],您将消除此错误 - 不要忘记检查'i + 1

答案 2 :(得分:0)

乍一看

 poly_substitue(poly_diff,x) 
对于特殊的x,

似乎为零。尝试在每次更新前打印x来跟踪迭代。

但我认为异常是由代码中的错误引起的:由于多项式中的绝对系数C * X ^ 0被区分为0 * X ^ -1,因此poly_substitute会引发ZeroDivisionException当x = 0时。