给定一个x,y点数组,如何按顺时针顺序(围绕它们的整体平均中心点)对该数组的点进行排序?我的目标是将点传递给线创建函数,最终看起来相当“坚实”,尽可能凸起,没有相交的线。
对于它的价值,我正在使用Lua,但任何伪代码都会受到赞赏。非常感谢您的帮助!
更新:作为参考,这是基于Ciamej优秀答案的Lua代码(忽略我的“app”前缀):
function appSortPointsClockwise(points)
local centerPoint = appGetCenterPointOfPoints(points)
app.pointsCenterPoint = centerPoint
table.sort(points, appGetIsLess)
return points
end
function appGetIsLess(a, b)
local center = app.pointsCenterPoint
if a.x >= 0 and b.x < 0 then return true
elseif a.x == 0 and b.x == 0 then return a.y > b.y
end
local det = (a.x - center.x) * (b.y - center.y) - (b.x - center.x) * (a.y - center.y)
if det < 0 then return true
elseif det > 0 then return false
end
local d1 = (a.x - center.x) * (a.x - center.x) + (a.y - center.y) * (a.y - center.y)
local d2 = (b.x - center.x) * (b.x - center.x) + (b.y - center.y) * (b.y - center.y)
return d1 > d2
end
function appGetCenterPointOfPoints(points)
local pointsSum = {x = 0, y = 0}
for i = 1, #points do pointsSum.x = pointsSum.x + points[i].x; pointsSum.y = pointsSum.y + points[i].y end
return {x = pointsSum.x / #points, y = pointsSum.y / #points}
end
答案 0 :(得分:174)
首先,计算中心点。 然后使用您喜欢的任何排序算法对点进行排序,但使用特殊比较例程来确定一个点是否小于另一个点。
通过这个简单的计算,您可以检查一个点(a)是否相对于中心位于另一个点(b)的左侧或右侧:
det = (a.x - center.x) * (b.y - center.y) - (b.x - center.x) * (a.y - center.y)
如果结果为零,则它们在中心的同一条线上,如果它是正的或负的,则它在一侧或另一侧,因此一个点将在另一侧之前。 使用它,您可以构建一个小于关系的比较点,并确定它们在排序数组中的显示顺序。但是你必须定义该顺序的起点,我的意思是起始角度(例如x轴的正半部分)。
比较功能的代码如下所示:
bool less(point a, point b)
{
if (a.x - center.x >= 0 && b.x - center.x < 0)
return true;
if (a.x - center.x < 0 && b.x - center.x >= 0)
return false;
if (a.x - center.x == 0 && b.x - center.x == 0) {
if (a.y - center.y >= 0 || b.y - center.y >= 0)
return a.y > b.y;
return b.y > a.y;
}
// compute the cross product of vectors (center -> a) x (center -> b)
int det = (a.x - center.x) * (b.y - center.y) - (b.x - center.x) * (a.y - center.y);
if (det < 0)
return true;
if (det > 0)
return false;
// points a and b are on the same line from the center
// check which point is closer to the center
int d1 = (a.x - center.x) * (a.x - center.x) + (a.y - center.y) * (a.y - center.y);
int d2 = (b.x - center.x) * (b.x - center.x) + (b.y - center.y) * (b.y - center.y);
return d1 > d2;
}
这将从12点开始顺时针点顺序。相同“小时”的点数将从远离中心的点开始。
如果使用整数类型(在Lua中不存在),则必须确保det,d1和d2变量属于能够保存执行计算结果的类型。
如果你想获得看起来很稳固,尽可能凸起的东西,那么我想你正在寻找一个Convex Hull。您可以使用Graham Scan计算它。 在此算法中,您还必须从特殊轴心点开始顺时针(或逆时针)对点进行排序。然后你重复简单的循环步骤,每次检查你是否向左或向右转向凸包添加新点,这个检查是基于十字产品,就像在上面的比较函数中一样。
修改强>
添加了一个if语句if (a.y - center.y >= 0 || b.y - center.y >=0)
,以确保从远离中心的点开始对具有x = 0和负y的点进行排序。如果您不关心同一'小时'的点数顺序,您可以省略此if语句并始终返回a.y > b.y
。
更正了添加-center.x
和-center.y
的第一个if语句。
添加了第二个if语句(a.x - center.x < 0 && b.x - center.x >= 0)
。这是一个明显的疏忽,它失踪了。现在可以重新组织if语句,因为某些检查是多余的。例如,如果第一个if语句中的第一个条件为false,则第二个if的第一个条件必须为true。但是,为了简单起见,我决定保留代码。编译器很可能会优化代码并产生相同的结果。
答案 1 :(得分:18)
您要求的是一个称为polar coordinates的系统。从笛卡尔坐标到极坐标的转换很容易用任何语言完成。公式可以在this section中找到。
我不认识Lua,但this page似乎为此次转化提供了代码段。
转换为极坐标后,只需按角度θ进行排序。
答案 2 :(得分:17)
解决问题的一个有趣的替代方法是找到旅行商问题(TSP)的近似最小值,即。连接所有积分的最短路线。如果你的点形成凸形,它应该是正确的解决方案,否则,它应该仍然看起来很好(“实心”形状可以定义为具有低周长/面积比的形状,这是我们在这里优化的)
您可以为TSP使用优化器的任何实现,我非常确定您可以用您选择的语言找到它。
答案 3 :(得分:2)
另一个版本(如果a以逆时针方向出现在b之前,则返回true):
bool lessCcw(const Vector2D ¢er, const Vector2D &a, const Vector2D &b) const
{
// Computes the quadrant for a and b (0-3):
// ^
// 1 | 0
// ---+-->
// 2 | 3
const int dax = ((a.x() - center.x()) > 0) ? 1 : 0;
const int day = ((a.y() - center.y()) > 0) ? 1 : 0;
const int qa = (1 - dax) + (1 - day) + ((dax & (1 - day)) << 1);
/* The previous computes the following:
const int qa =
( (a.x() > center.x())
? ((a.y() > center.y())
? 0 : 3)
: ((a.y() > center.y())
? 1 : 2)); */
const int dbx = ((b.x() - center.x()) > 0) ? 1 : 0;
const int dby = ((b.y() - center.y()) > 0) ? 1 : 0;
const int qb = (1 - dbx) + (1 - dby) + ((dbx & (1 - dby)) << 1);
if (qa == qb) {
return (b.x() - center.x()) * (a.y() - center.y()) < (b.y() - center.y()) * (a.x() - center.x());
} else {
return qa < qb;
}
}
这更快,因为编译器(在Visual C ++ 2015上测试)不会生成跳转到计算dax,day,dbx,dby。这里是编译器的输出程序集:
; 28 : const int dax = ((a.x() - center.x()) > 0) ? 1 : 0;
vmovss xmm2, DWORD PTR [ecx]
vmovss xmm0, DWORD PTR [edx]
; 29 : const int day = ((a.y() - center.y()) > 0) ? 1 : 0;
vmovss xmm1, DWORD PTR [ecx+4]
vsubss xmm4, xmm0, xmm2
vmovss xmm0, DWORD PTR [edx+4]
push ebx
xor ebx, ebx
vxorps xmm3, xmm3, xmm3
vcomiss xmm4, xmm3
vsubss xmm5, xmm0, xmm1
seta bl
xor ecx, ecx
vcomiss xmm5, xmm3
push esi
seta cl
; 30 : const int qa = (1 - dax) + (1 - day) + ((dax & (1 - day)) << 1);
mov esi, 2
push edi
mov edi, esi
; 31 :
; 32 : /* The previous computes the following:
; 33 :
; 34 : const int qa =
; 35 : ( (a.x() > center.x())
; 36 : ? ((a.y() > center.y()) ? 0 : 3)
; 37 : : ((a.y() > center.y()) ? 1 : 2));
; 38 : */
; 39 :
; 40 : const int dbx = ((b.x() - center.x()) > 0) ? 1 : 0;
xor edx, edx
lea eax, DWORD PTR [ecx+ecx]
sub edi, eax
lea eax, DWORD PTR [ebx+ebx]
and edi, eax
mov eax, DWORD PTR _b$[esp+8]
sub edi, ecx
sub edi, ebx
add edi, esi
vmovss xmm0, DWORD PTR [eax]
vsubss xmm2, xmm0, xmm2
; 41 : const int dby = ((b.y() - center.y()) > 0) ? 1 : 0;
vmovss xmm0, DWORD PTR [eax+4]
vcomiss xmm2, xmm3
vsubss xmm0, xmm0, xmm1
seta dl
xor ecx, ecx
vcomiss xmm0, xmm3
seta cl
; 42 : const int qb = (1 - dbx) + (1 - dby) + ((dbx & (1 - dby)) << 1);
lea eax, DWORD PTR [ecx+ecx]
sub esi, eax
lea eax, DWORD PTR [edx+edx]
and esi, eax
sub esi, ecx
sub esi, edx
add esi, 2
; 43 :
; 44 : if (qa == qb) {
cmp edi, esi
jne SHORT $LN37@lessCcw
; 45 : return (b.x() - center.x()) * (a.y() - center.y()) < (b.y() - center.y()) * (a.x() - center.x());
vmulss xmm1, xmm2, xmm5
vmulss xmm0, xmm0, xmm4
xor eax, eax
pop edi
vcomiss xmm0, xmm1
pop esi
seta al
pop ebx
; 46 : } else {
; 47 : return qa < qb;
; 48 : }
; 49 : }
ret 0
$LN37@lessCcw:
pop edi
pop esi
setl al
pop ebx
ret 0
?lessCcw@@YA_NABVVector2D@@00@Z ENDP ; lessCcw
享受。
答案 4 :(得分:0)
- y = |a * b| , x = a . b
- Atan2(y , x)...............................gives angle between -PI to + PI in radians
- (Input % 360 + 360) % 360................to convert it from 0 to 2PI in radians
- sort by adding_points to list_of_polygon_verts by angle we got 0 to 360
最后,您将获得Anticlockwize排序的版本
list.Reverse()..................顺时针方向
答案 5 :(得分:0)
这是一种按顺时针顺序对矩形的顶点进行排序的方法。我修改了 pyimagesearch 提供的原始解决方案,摆脱了 scipy 依赖。
import numpy as np
def pointwise_distance(pts1, pts2):
"""Calculates the distance between pairs of points
Args:
pts1 (np.ndarray): array of form [[x1, y1], [x2, y2], ...]
pts2 (np.ndarray): array of form [[x1, y1], [x2, y2], ...]
Returns:
np.array: distances between corresponding points
"""
dist = np.sqrt(np.sum((pts1 - pts2)**2, axis=1))
return dist
def order_points(pts):
"""Orders points in form [top left, top right, bottom right, bottom left].
Source: https://www.pyimagesearch.com/2016/03/21/ordering-coordinates-clockwise-with-python-and-opencv/
Args:
pts (np.ndarray): list of points of form [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
Returns:
[type]: [description]
"""
# sort the points based on their x-coordinates
x_sorted = pts[np.argsort(pts[:, 0]), :]
# grab the left-most and right-most points from the sorted
# x-roodinate points
left_most = x_sorted[:2, :]
right_most = x_sorted[2:, :]
# now, sort the left-most coordinates according to their
# y-coordinates so we can grab the top-left and bottom-left
# points, respectively
left_most = left_most[np.argsort(left_most[:, 1]), :]
tl, bl = left_most
# now that we have the top-left coordinate, use it as an
# anchor to calculate the Euclidean distance between the
# top-left and right-most points; by the Pythagorean
# theorem, the point with the largest distance will be
# our bottom-right point. Note: this is a valid assumption because
# we are dealing with rectangles only.
# We need to use this instead of just using min/max to handle the case where
# there are points that have the same x or y value.
D = pointwise_distance(np.vstack([tl, tl]), right_most)
br, tr = right_most[np.argsort(D)[::-1], :]
# return the coordinates in top-left, top-right,
# bottom-right, and bottom-left order
return np.array([tl, tr, br, bl], dtype="float32")