我正在按照教程在 Sagemaker 上使用 MXNET 来开发推荐引擎。
执行以下单元格后,我收到 AttributeError: 'NoneType' object has no attribute 'CONTENT_TYPE'
test_preds= []
for array in np.array_split(test_df[['customer_id',
'product_id']].values,40):
test_preds +=
predictor.predict(json.dumps({'customer_id':array[:,0].tolist(),
'product_id':array[:,1].tolist()}))
test_preds = np.array(test_preds)
print('MSE:', np.mean((test_df['star_rating'] -test_preds))**2)
显示的错误:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-38-a830dbc6ac84> in <module>
2 for array in np.array_split(test_df[['customer_id', 'product_id']].values,40):
3 test_preds += predictor.predict(json.dumps({'customer_id':array[:,0].tolist(),
----> 4 'product_id':array[:,1].tolist()}))
5 test_preds = np.array(test_preds)
6 print('MSE:', np.mean((test_df['star_rating'] -test_preds))**2)
~/anaconda3/envs/amazonei_mxnet_p36/lib/python3.6/site-packages/sagemaker/predictor.py in predict(self, data, initial_args, target_model, target_variant, inference_id)
132
133 request_args = self._create_request_args(
--> 134 data, initial_args, target_model, target_variant, inference_id
135 )
136 response = self.sagemaker_session.sagemaker_runtime_client.invoke_endpoint(**request_args)
~/anaconda3/envs/amazonei_mxnet_p36/lib/python3.6/site-packages/sagemaker/predictor.py in _create_request_args(self, data, initial_args, target_model, target_variant, inference_id)
158
159 if "ContentType" not in args:
--> 160 args["ContentType"] = self.content_type
161
162 if "Accept" not in args:
~/anaconda3/envs/amazonei_mxnet_p36/lib/python3.6/site-packages/sagemaker/predictor.py in content_type(self)
511 def content_type(self):
512 """The MIME type of the data sent to the inference endpoint."""
--> 513 return self.serializer.CONTENT_TYPE
514
515 @property
AttributeError: 'NoneType' object has no attribute 'CONTENT_TYPE'
**predictor 是训练模型的生产端点
test_df 在这里定义
df_titles = df[['customer_id','product_title', 'product_id',
'star_rating']]
df = df[['customer_id', 'product_id', 'star_rating']]
customers = df['customer_id'].value_counts()
products = df['product_id'].value_counts()
# Filter long-tail
customers = customers[customers >= 5]
products = products[products >= 10]
reduced_df_titles = df_titles.merge(pd.DataFrame({'customer_id':
customers.index})).merge(pd.DataFrame({'product_id':
products.index}))
reduced_df = df.merge(pd.DataFrame({'customer_id':
customers.index})).merge(pd.DataFrame({'product_id':
products.index}))
customers = reduced_df['customer_id'].value_counts()
products = reduced_df['product_id'].value_counts()
# Number users and items
#Next, we'll number each user and item, giving them their own
sequential index. This will allow us to hold
#the information in a sparse format where the sequential indices
indicate the row and column in our ratings matrix.
customer_index = pd.DataFrame({'customer_id': customers.index,
'user':
np.arange(customers.shape[0])})
product_index = pd.DataFrame({'product_id': products.index, 'item':
np.arange(products.shape[0])})
reduced_df = reduced_df.merge(customer_index).merge(product_index)
reduced_df_titles =
reduced_df_titles.merge(customer_index).merge(product_index)
# Split train and test
train_df, test_df = train_test_split(reduced_df, test_size=0.2,
random_state=0)