我正在尝试在 MASK-RCNN 上进行培训,我有两个班级, apple 和banana 。我正在从 matterport github repo 做,但遇到很多错误,我已经上传了 Json 文件和我的类,看看它并帮助我,我已经完成了来自 VIA 2.0.8 的注释,它是使用矩形完成的,而不是多边形。
Json 看起来像:
{"_via_settings":{"ui":
{"annotation_editor_height":25,"annotation_editor_fontsize":0.8,
"leftsidebar_width":18,"image_grid{"img_height":80,"rshape_fill":"none","rshape_fill_opacity":0.3,"rshape_stroke":"yellow","rshape_stroke_width":2,"show_region_shape":true," show_image_policy":"all"},"image":{"region_label":"via_region_id","region_color":"class","region_label_font":"10px Sans","on_image_annotation_editor_placement":" NEAR_REGION"}},"core":{"buffer_size":18,"filepath":{},"default_filepath":""},"project":{"name":"Train_Annotations_New"}},"_via_img_metadata": {"1Apple.jpg3895":{"filename":"1Apple.jpg","size":3895,"regions":[{"shape_attributes":{"name":"rect","x":80," y":10,"width":154,"height":137},"region_attributes":{"class":{"apple":true}}}],"file_attributes":{}}
我的班级:
class FruitsDataset(utils.Dataset):
def load_custom(self, dataset_dir, subset):
"""Load a subset of the custom dataset.
dataset_dir: Root directory of the dataset.
subset: Subset to load: train or val
"""
# Add classes according to the numbe of classes required to detect
self.add_class("custom", 1, "apple")
self.add_class("custom",2,"banana")
# Train or validation dataset?
assert subset in ["train", "val"]
dataset_dir = os.path.join(dataset_dir, subset)
annotations = json.load(open(os.path.join(dataset_dir, "via_region_data.json")))
annotations = [annotations['_via_img_metadata'][a] for a in annotations['_via_img_metadata']]
# print(annotations)
# Add images
for ind, a in enumerate(annotations):
# Get the x, y coordinates of points of the polygons that make up
# the outline of each object instance. These are stores in the
# shape_attributes (see json format above)
# The if condition is needed to support VIA versions 1.x and 2.x.
polygons = [r['shape_attributes'] for r in annotations[ind]['regions']]
#labelling each class in the given image to a number
custom = [s['region_attributes'] for s in annotations[ind]['regions']]
num_ids=[]
#Add the classes according to the requirement
for n in custom:
try:
if n['label']=='apple':
num_ids.append(1)
elif n['label']=='banana':
num_ids.append(2)
except:
pass
# load_mask() needs the image size to convert polygons to masks.
# Unfortunately, VIA doesn't include it in JSON, so we must read
# the image. This is only managable since the dataset is tiny.
image_path = os.path.join(dataset_dir, annotations[ind]['filename'])
image = skimage.io.imread(image_path)
height, width = image.shape[:2]
self.add_image(
"custom",
image_id=annotations[ind]['filename'],
path=image_path,
width=width, height=height,
polygons=polygons,
num_ids=num_ids)
def load_mask(self, image_id):
"""Generate instance masks for an image.
Returns:
masks: A bool array of shape [height, width, instance count] with
one mask per instance.
class_ids: a 1D array of class IDs of the instance masks.
"""
# If not a Horse/Man dataset image, delegate to parent class.
image_info = self.image_info[image_id]
if image_info["source"] != "object":
return super(self.__class__, self).load_mask(image_id)
# Convert polygons to a bitmap mask of shape
# [height, width, instance_count]
info = self.image_info[image_id]
if info["source"] != "object":
return super(self.__class__, self).load_mask(image_id)
num_ids = info['num_ids']
mask = np.zeros([info["height"], info["width"], len(info["polygons"])],
dtype=np.uint8)
for i, p in enumerate(info["polygons"]):
# Get indexes of pixels inside the polygon and set them to 1
rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x'])
mask[rr, cc, i] = 1
# Return mask, and array of class IDs of each instance. Since we have
# one class ID only, we return an array of 1s
# Map class names to class IDs.
num_ids = np.array(num_ids, dtype=np.int32)
return mask, num_ids #np.ones([mask.shape[-1]], dtype=np.int32)
def image_reference(self, image_id):
"""Return the path of the image."""
info = self.image_info[image_id]
if info["source"] == "object":
return info["path"]
else:
super(self.__class__, self).image_reference(image_id)