我有一个非常简单的架构,其中有 2 个输入:第一个输入采用嵌入的文本,每个输入具有 339 个维度,其他输入采用一个热编码的特征,具有 101 个维度。错误来自第二个输入。 我最初尝试过inputs_other = Input(shape=(101,)),inputs_other = Input(batch_input_shape=(101,1)),inputs_other = Input(shape=(101,1,None)),这些都给了我类似的错误.
inputs_essay = Input(shape=(max_length_essay,))
embedding_essay = Embedding(vocab_size, 300, weights=[embedding_matrix], trainable=False)(inputs_essay)
lstm1 = LSTM(100,activation='tanh')(embedding_essay)
flat1 = Flatten()(lstm1)
inputs_other = Input(shape=(101,1))
conv1 = Conv1D(filters=512, kernel_size=4, activation='sigmoid')(inputs_other)
conv2 = Conv1D(filters=256, kernel_size=4, activation='tanh')(conv1)
flat2 = Flatten()(conv2)
merged1 = concatenate([flat1, flat2])
dense1 = Dense(512, activation='tanh',kernel_initializer=tf.keras.initializers.HeUniform())(merged1)
drop1 = Dropout(0.5)(dense1)
dense2 = Dense(258, activation='relu',kernel_initializer=tf.keras.initializers.HeUniform())(drop1)
drop2 = Dropout(0.5)(dense2)
dense3 = Dense(64, activation='relu',kernel_initializer=tf.keras.initializers.HeUniform())(drop2)
outputs = Dense(2, activation='softmax')(dense1)
inputs=[inputs_essay, inputs_other]
log_dir="logs\\fit\\" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,histogram_freq=1, write_graph=True,write_grads=True)
rlrop=ReduceLROnPlateau(monitor='val_accuracy',factor=0.9,patience=1)
lrschedule = LearningRateScheduler(changeLearningRate, verbose=1)
optimizer = tf.keras.optimizers.Adam(0.01)
earlystop = EarlyStopping(monitor='val_accuracy', patience=2, verbose=1)#, min_delta=0.03
filepath="/content/drive/MyDrive/LSTM_Assignment/model_save/best_model_1-{epoch:02d}-{val_loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath=filepath, monitor='val_accuracy', save_best_only=True, verbose=1, mode='auto') #
callback_list = [Metrics(validation_data=(X_test,y_test)), lrschedule, earlystop, checkpoint,rlrop, terminateNan, tensorboard_callback]
model = Model(inputs=inputs, outputs=outputs)
# compile
model.compile(loss='sparse_categorical_crossentropy', optimizer=optimizer, metrics=['accuracy',auc])
# summarize
print(model.summary())
# plot_model(model, show_shapes=True, to_file='multichannel.png')
model.fit([X_train_essay, X_train_other],y_train,epochs=10, validation_data=([X_test_essay, X_test_other],y_test), batch_size=16) #, callbacks=callback_list
这是回溯:
Model: "model_1"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_9 (InputLayer) [(None, 339)] 0
__________________________________________________________________________________________________
input_10 (InputLayer) [(None, 101, 1)] 0
__________________________________________________________________________________________________
embedding_4 (Embedding) (None, 339, 300) 15112800 input_9[0][0]
__________________________________________________________________________________________________
conv1d_8 (Conv1D) (None, 98, 512) 2560 input_10[0][0]
__________________________________________________________________________________________________
lstm_4 (LSTM) (None, 100) 160400 embedding_4[0][0]
__________________________________________________________________________________________________
conv1d_9 (Conv1D) (None, 95, 256) 524544 conv1d_8[0][0]
__________________________________________________________________________________________________
flatten_8 (Flatten) (None, 100) 0 lstm_4[0][0]
__________________________________________________________________________________________________
flatten_9 (Flatten) (None, 24320) 0 conv1d_9[0][0]
__________________________________________________________________________________________________
concatenate_4 (Concatenate) (None, 24420) 0 flatten_8[0][0]
flatten_9[0][0]
__________________________________________________________________________________________________
dense_16 (Dense) (None, 512) 12503552 concatenate_4[0][0]
__________________________________________________________________________________________________
dense_19 (Dense) (None, 2) 1026 dense_16[0][0]
==================================================================================================
Total params: 28,304,882
Trainable params: 13,192,082
Non-trainable params: 15,112,800
__________________________________________________________________________________________________
None
Epoch 1/10
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-32-5b447e95f1a0> in <module>()
32 print(model.summary())
33 # plot_model(model, show_shapes=True, to_file='multichannel.png')
---> 34 model.fit([X_train_essay, X_train_other],y_train,epochs=10, validation_data=([X_test_essay, X_test_other],y_test), batch_size=16) #, callbacks=callback_list
9 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
984 except Exception as e: # pylint:disable=broad-except
985 if hasattr(e, "ag_error_metadata"):
--> 986 raise e.ag_error_metadata.to_exception(e)
987 else:
988 raise
ValueError: in user code:
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:855 train_function *
return step_function(self, iterator)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:845 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
/usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:1285 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:2833 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:3608 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:838 run_step **
outputs = model.train_step(data)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:795 train_step
y_pred = self(x, training=True)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/base_layer.py:1030 __call__
outputs = call_fn(inputs, *args, **kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/functional.py:421 call
inputs, training=training, mask=mask)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/functional.py:556 _run_internal_graph
outputs = node.layer(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/base_layer.py:1013 __call__
input_spec.assert_input_compatibility(self.input_spec, inputs, self.name)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/input_spec.py:235 assert_input_compatibility
str(tuple(shape)))
ValueError: Input 0 of layer conv1d_8 is incompatible with the layer: : expected min_ndim=3, found ndim=2. Full shape received: (None, 101)