Scipy:optimize.fmin和optimize.leastsq之间的区别

时间:2011-07-21 16:22:09

标签: python scipy

scipy的optimize.fmin和optimize.leastsq有什么区别?它们似乎在this example page中几乎以相同的方式使用。我能看到的唯一区别是,lesssq实际上自己计算了平方和(正如其名称所暗示的那样),而当使用fmin时,必须手动执行此操作。除此之外,这两个函数是等价的吗?

2 个答案:

答案 0 :(得分:4)

下面有不同的算法。

fmin正在使用单纯形法; leastsq使用最小二乘拟合。

答案 1 :(得分:0)

只是为了添加一些信息,我正在开发一个适合双指数函数的模块,而且minimalsq和最小化之间的时差似乎差不多是100倍。请查看下面的代码了解更多详情。

我使用了双指数曲线,它是两个指数的总和,模型函数有4个参数可以拟合。 S,f,D_star和D.

使用了拟合的所有默认参数

S [f e ^( - x * D_star)+(1 - f)e ^( - x * D)]

('Time taken for minimize:', 0.011617898941040039)
('Time taken for leastsq :', 0.0003180503845214844)

使用的代码:

import numpy as np
from scipy.optimize import minimize, leastsq
from time import time


def ivim_function(params, bvals):
    """The Intravoxel incoherent motion (IVIM) model function.

        S(b) = S_0[f*e^{(-b*D\*)} + (1-f)e^{(-b*D)}]

        S_0, f, D\* and D are the IVIM parameters.

    Parameters
    ----------
        params : array
                parameters S0, f, D_star and D of the model

        bvals : array
                bvalues

    References
    ----------
    .. [1] Le Bihan, Denis, et al. "Separation of diffusion
               and perfusion in intravoxel incoherent motion MR
               imaging." Radiology 168.2 (1988): 497-505.
    .. [2] Federau, Christian, et al. "Quantitative measurement
               of brain perfusion with intravoxel incoherent motion
               MR imaging." Radiology 265.3 (2012): 874-881.
    """
    S0, f, D_star, D = params
    S = S0 * (f * np.exp(-bvals * D_star) + (1 - f) * np.exp(-bvals * D))
    return S


def _ivim_error(params, bvals, signal):
    """Error function to be used in fitting the IVIM model
    """
    return (signal - ivim_function(params, bvals))


def sum_sq(params, bvals, signal):
    """Sum of squares of the errors. This function is minimized"""
    return np.sum(_ivim_error(params, bvals, signal)**2)

x0 = np.array([100., 0.20, 0.008, 0.0009])
bvals = np.array([0., 10., 20., 30., 40., 60., 80., 100.,
                  120., 140., 160., 180., 200., 220., 240.,
                  260., 280., 300., 350., 400., 500., 600.,
                  700., 800., 900., 1000.])
data = ivim_function(x0, bvals)

optstart = time()
opt = minimize(sum_sq, x0, args=(bvals, data))
optend = time()
time_taken = optend - optstart
print("Time taken for opt:", time_taken)


lstart = time()
lst = leastsq(_ivim_error,
              x0,
              args=(bvals, data),)
lend = time()
time_taken = lend - lstart
print("Time taken for leastsq :", time_taken)

print('Parameters estimated using minimize :', opt.x)
print('Parameters estimated using leastsq :', lst[0])