我正在尝试解决深度学习课程的问题,我必须修改的代码块如下
def alpaca_model(image_shape=IMG_SIZE, data_augmentation=data_augmenter()):
""" Define a tf.keras model for binary classification out of the MobileNetV2 model
Arguments:
image_shape -- Image width and height
data_augmentation -- data augmentation function
Returns:
tf.keras.model
"""
input_shape = image_shape + (3,)
# START CODE HERE
base_model=tf.keras.applications.MobileNetV2(input_shape=input_shape, include_top=False, weights="imagenet")
# Freeze the base model by making it non trainable
base_model.trainable = None
# create the input layer (Same as the imageNetv2 input size)
inputs = tf.keras.Input(shape=None)
# apply data augmentation to the inputs
x = None
# data preprocessing using the same weights the model was trained on
x = preprocess_input(None)
# set training to False to avoid keeping track of statistics in the batch norm layer
x = base_model(None, training=None)
# Add the new Binary classification layers
# use global avg pooling to summarize the info in each channel
x = None()(x)
#include dropout with probability of 0.2 to avoid overfitting
x = None(None)(x)
# create a prediction layer with one neuron (as a classifier only needs one)
prediction_layer = None
# END CODE HERE
outputs = prediction_layer(x)
model = tf.keras.Model(inputs, outputs)
return model
IMG_SIZE = (160, 160)
def data_augmentation():
data = tl.keras.Sequential()
data.add(RandomFlip("horizontal")
data.add(RandomRotation(0.2)
return data
我按照指示从该模板开始尝试了 3 次,并进行了大量反复试验。我不知道我错过了什么。我已经达到了训练模型的程度,我可以得到它的摘要,但摘要不正确。
请帮忙,我快疯了,试图弄清楚这一点。我知道这非常简单,但正是这些简单的问题让我感到困惑。
答案 0 :(得分:0)
您可能需要使用以下代码来运行您的算法。
input_shape = image_shape + (3,)
### START CODE HERE
base_model = tf.keras.applications.MobileNetV2(input_shape=input_shape,
include_top=False, # <== Important!!!!
weights='imagenet') # From imageNet
# Freeze the base model by making it non trainable
base_model.trainable = False
# create the input layer (Same as the imageNetv2 input size)
inputs = tf.keras.Input(shape=input_shape)
# apply data augmentation to the inputs
x = data_augmentation(inputs)
# data preprocessing using the same weights the model was trained on
x = preprocess_input(x)
# set training to False to avoid keeping track of statistics in the batch norm layer
x = base_model(x, training=False)
# Add the new Binary classification layers
# use global avg pooling to summarize the info in each channel
x = tf.keras.layers.GlobalAveragePooling2D()(x)
#include dropout with probability of 0.2 to avoid overfitting
x = tf.keras.layers.Dropout(0.2)(x)
# create a prediction layer with one neuron (as a classifier only needs one)
prediction_layer = tf.keras.layers.Dense(1 ,activation='linear')(x)
### END CODE HERE
outputs = prediction_layer
model = tf.keras.Model(inputs, outputs)
答案 1 :(得分:0)
我遇到了同样的问题,但我的错误是在最后将 (x) 放在密集层中,这是对我有用的代码:
def alpaca_model(image_shape=IMG_SIZE, data_augmentation=data_augmenter()):
''' Define a tf.keras model for binary classification out of the MobileNetV2 model
Arguments:
image_shape -- Image width and height
data_augmentation -- data augmentation function
Returns:
Returns:
tf.keras.model
'''
input_shape = image_shape + (3,)
### START CODE HERE
base_model = tf.keras.applications.MobileNetV2(input_shape=input_shape,
include_top=False, # <== Important!!!!
weights='imagenet') # From imageNet
# Freeze the base model by making it non trainable
base_model.trainable = False
# create the input layer (Same as the imageNetv2 input size)
inputs = tf.keras.Input(shape=input_shape)
# apply data augmentation to the inputs
x = data_augmentation(inputs)
# data preprocessing using the same weights the model was trained on
x = preprocess_input(x)
# set training to False to avoid keeping track of statistics in the batch norm layer
x = base_model(x, training=False)
# Add the new Binary classification layers
# use global avg pooling to summarize the info in each channel
x = tfl.GlobalAveragePooling2D()(x)
#include dropout with probability of 0.2 to avoid overfitting
x = tfl.Dropout(0.2)(x)
# create a prediction layer with one neuron (as a classifier only needs one)
prediction_layer = tfl.Dense(1, activation = 'linear')
### END CODE HERE
outputs = prediction_layer(x)
model = tf.keras.Model(inputs, outputs)
return model
答案 2 :(得分:0)
在 def 数据增强下,你的括号没有很好地闭合