混淆矩阵不相加

时间:2021-05-17 16:18:34

标签: machine-learning classification svm logistic-regression confusion-matrix

我正在使用 NLP 测试不同的分类模型,并注意到我的混淆矩阵指标没有相加。有没有人见过这个;我错过了什么吗?

X = df[['text']]
y = df[['class']]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .10, random_state = 0, stratify = y)

y_test.value_counts()
class
0            20
1            14
dtype: int64

def model_classifiers (model, ModelName):
    classifier = model
    classifier.fit(X_train, y_train.values.ravel())
    y_pred = classifier.predict(X_test)
    #y_proba = pd.DataFrame(classifier.predict_proba(X_test))
    print(ModelName)
    print(accuracy_score(y_train, classifier.predict(X_train)))
    print(accuracy_score(y_test, y_pred))
    print(confusion_matrix(y_test, y_pred))
    print(classification_report(y_test, y_pred))

model_classifiers(LinearSVC(), 'LINEAR SVC')

LINEAR SVC
1.0
0.6176470588235294
[[16  4]
 [ 9  5]]
              precision    recall  f1-score   support

           0       0.64      0.80      0.71        20
           1       0.56      0.36      0.43        14

    accuracy                           0.62        34
   macro avg       0.60      0.58      0.57        34
weighted avg       0.61      0.62      0.60        34


model_classifiers(LogisticRegression(penalty = 'l2'), 'LOGISTIC REGRESSION')

LOGISTIC REGRESSION
0.9833333333333333
0.5882352941176471
[[16  4]
 [10  4]]
              precision    recall  f1-score   support

           0       0.62      0.80      0.70        20
           1       0.50      0.29      0.36        14

    accuracy                           0.59        34
   macro avg       0.56      0.54      0.53        34
weighted avg       0.57      0.59      0.56        34

线性 SVC --> 组 1:16+9 = 25,组 2:4+5 = 9 逻辑回归 --> group1 = 16+10 = 26, group2: 4+4=8

0 个答案:

没有答案