“输入无效。应该是字符串、字符串列表/元组或整数列表/元组。”值错误:输入无效

时间:2021-05-06 13:15:13

标签: python python-3.x pandas tokenize bert-language-model

我在法语中使用 Bert 标记器,我收到此错误,但我似乎没有解决它。如果您有任何建议。


Traceback (most recent call last):
  File "training_cross_data_2.py", line 240, in <module>
    training_data(f, root, testdir, dict_unc)
  File "training_cross_data_2.py", line 107, in training_data
    Xtrain_emb, mdlname = get_flaubert_layer(data)
  File "training_cross_data_2.py", line 40, in get_flaubert_layer
    tokenized = texte.apply((lambda x: flaubert_tokenizer.encode(x, add_special_tokens=True, max_length=512, truncation=True)))
  File "/home/getalp/kelodjoe/anaconda3/envs/env/lib/python3.6/site-packages/pandas/core/series.py", line 3848, in apply
    mapped = lib.map_infer(values, f, convert=convert_dtype)
  File "pandas/_libs/lib.pyx", line 2329, in pandas._libs.lib.map_infer
  File "training_cross_data_2.py", line 40, in <lambda>
    tokenized = texte.apply((lambda x: flaubert_tokenizer.encode(x, add_special_tokens=True, max_length=512, truncation=True)))
  File "/home/anaconda3/envs/env/lib/python3.6/site-packages/transformers/tokenization_utils.py", line 907, in encode
    **kwargs,
  File "/home/anaconda3/envs/env/lib/python3.6/site-packages/transformers/tokenization_utils.py", line 1021, in encode_plus
    first_ids = get_input_ids(text)
  File "/home/anaconda3/envs/env/lib/python3.6/site-packages/transformers/tokenization_utils.py", line 1003, in get_input_ids
    "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
ValueError: Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers.

我环顾四周寻找喜欢的答案,但提出的建议似乎不起作用。文本是数据框。

这里是代码:

def get_flaubert_layer(texte): # teste is dataframe which I take from an excel file
    
    language_model_dir= os.path.expanduser(args.language_model_dir)
    lge_size = language_model_dir[16:-1]   # modify when on jean zay 27:-1
    print(lge_size)
    flaubert = FlaubertModel.from_pretrained(language_model_dir)
    flaubert_tokenizer = FlaubertTokenizer.from_pretrained(language_model_dir)
    tokenized = texte.apply((lambda x: flaubert_tokenizer.encode(x, add_special_tokens=True, max_length=512, truncation=True)))
    max_len = 0
    for i in tokenized.values:
        if len(i) > max_len:
            max_len = len(i)
    padded = np.array([i + [0] * (max_len - len(i)) for i in tokenized.values])
    attention_mask = np.where(padded != 0, 1, 0)

我有另一个结构相同的文件,但它可以工作,但对于这种情况,我不知道为什么我应该重新下载模型会出现此错误?

文件是这样的:

enter image description here

1 个答案:

答案 0 :(得分:0)

您可能想要更改此行:

tokenized = texte.apply((lambda x: flaubert_tokenizer.encode(x, add_special_tokens=True, max_length=512, truncation=True)))

tokenized = flaubert_tokenizer.encode(texte["verbatim"], 
    add_special_tokens=True, 
    max_length=512, 
    truncation=True)`

这有两个优点:

  1. 您没有将 Pandas 行传递给标记化函数(我猜这是导致您出错的原因)。
  2. 您不是每行调用一次 encode 函数。这可能会加速标记化。