import imageio
import glob
import numpy as np
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
trainImages = []
for imagePath in glob.glob('C:/Users/razva/*.png'):
image = imageio.imread(imagePath)
trainImages.append(image)
trainImages = np.array(trainImages)
f = open('C:/Users/razva/train.txt')
trainLabels = f.readlines()
for i in range(len(trainLabels)):
trainLabels[i] = int(trainLabels[i][11])
trainLabels = np.array(trainLabels)
validationImages = []
for imagePath in glob.glob('C:/Users/razva/*.png'):
image = imageio.imread(imagePath)
validationImages.append(image)
validationImages = np.array(validationImages)
f = open('C:/Users/razva/validation.txt')
validationLabels = f.readlines()
for i in range(len(validationLabels)):
validationLabels[i] = int(validationLabels[i][11])
validationLabels = np.array(validationLabels)
mean_image = np.mean(trainImages, axis = 0)
sd = np.std(trainImages)
trainImages = (trainImages - mean_image) / sd
mean_image1 = np.mean(validationImages, axis = 0)
sd1 = np.std(validationImages)
validationImages = (validationImages - mean_image1) / sd1
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
history = model.fit(trainImages, trainLabels, epochs=10, validation_data=(validationImages, validationLabels))
我有这个用于图像分类的 cnn,trainImages 和 trainLabel(从 0 到 8)是训练数据,validationImages 和 validationLabels 用于测试。图片是 32 * 32。我不能让这个算法工作,如果你发现更多错误,请告诉我。
答案 0 :(得分:1)
我无法确切地说出问题出在哪里,因为我无法访问加载的图像,但问题是您提供的样本没有“通道”轴,在指定的 input_shape=(32, 32, 3)
中表示为大小为 3。每个样本(图像)必须有 3 个维度(宽度、高度、通道),但相反,您传递的样本只有 2 个维度(宽度和高度)。
这很可能是因为您可能仅使用一个通道加载灰度图像,而 numpy 并未明确指定轴。如果是这种情况,请确保 trainImages 和 validationImages 都具有形状 (32, 32, 1),否则只需使用 np.expand_dims(_trainImages_, axis=-1)
(验证集相同),然后再将它们提供给模型。相应地,将第一个 Conv2D 层中的 input_shape 调整为 (32, 32, 1)。
希望它有帮助,否则让我了解更多细节。