是否有一种pythonic方式将1234.5678
之类的数字分成两部分(1234, 0.5678)
,即整数部分和小数部分?
答案 0 :(得分:114)
使用math.modf
:
import math
x = 1234.5678
math.modf(x) # (0.5678000000000338, 1234.0)
答案 1 :(得分:53)
我们可以使用一个不着名的内置功能; divmod:
>>> s = 1234.5678
>>> i, d = divmod(s, 1)
>>> i
1234.0
>>> d
0.5678000000000338
答案 2 :(得分:32)
>>> a = 147.234
>>> a % 1
0.23400000000000887
>>> a // 1
147.0
>>>
如果您希望整数部分为整数而不是浮点数,请改用int(a//1)
。要在单个段落中获取元组:(int(a//1), a%1)
编辑:请记住the decimal part of a float number is approximate,所以如果你想像人类一样代表它,你需要使用decimal library
答案 3 :(得分:13)
intpart,decimalpart = int(value),value-int(value)
适用于正数。
答案 4 :(得分:6)
此变体允许获得所需的精度:
>>> a = 1234.5678
>>> ( lambda x, y : ( int( x ), int( x * y ) % y / y ) )( a, 1e0 )
(1234, 0.0)
>>> ( lambda x, y : ( int( x ), int( x * y ) % y / y ) )( a, 1e1 )
(1234, 0.5)
>>> ( lambda x, y : ( int( x ), int( x * y ) % y / y ) )( a, 1e15 )
(1234, 0.5678)
答案 5 :(得分:3)
这对我也有用
>>> val_int = int(a)
>>> val_fract = a - val_int
答案 6 :(得分:1)
这就是我这样做的方式:
num = 123.456
split_num = str(num).split('.')
int_part = int(split_num[0])
decimal_part = int(split_num[1])
答案 7 :(得分:1)
如果你不介意使用NumPy,那么:
In [319]: real = np.array([1234.5678])
In [327]: integ, deci = int(np.floor(real)), np.asscalar(real % 1)
In [328]: integ, deci
Out[328]: (1234, 0.5678000000000338)
答案 8 :(得分:0)
看了几个答案之后。我想出了这两个语句,它们可以将正数和负数分为整数部分和小数部分,而不会影响精度(位溢出)。性能测试表明,只要不将这两个语句放入自己的函数或方法中,它们就会比math.modf
快。
i = int(x) # i contains a positive or negative integer
f = (x*1e17-i*1e17)/1e17 # f contains a positive or negative fraction
例如100.1323
-> 100, 0.1323
和-100.1323
-> -100, -0.1323
测试脚本:
#!/usr/bin/env python
import math
import cProfile
""" Get the performance of both statements vs math.modf. """
X = -100.1323
LOOPS = range(5*10**6)
def fun_a():
""" The integer part (i) is an integer, and
the fraction part (f) is a float.
NOTE: I think this is the most correct way. """
for _ in LOOPS:
i = int(X) # -100
f = (X*1e17-i*1e17)/1e17 # -0.1323
def fun_b():
""" The integer (i) and fraction (f) part will
come out as float.
NOTE: The only difference between this
and math.modf is the accuracy. """
for _ in LOOPS:
i = int(X) # -100
i, f = float(i), (X*1e17-i*1e17)/1e17 # (-100.0, -0.1323)
def fun_c():
""" Performance test of the statements in a function.
The integer part (i) is an integer, and
the fraction part (f) is a float. """
def modf(x):
i = int(x)
return i, (x*1e17-i*1e17)/1e17
for _ in LOOPS:
i, f = modf(X) # (-100, -0.1323)
def fun_d():
for _ in LOOPS:
f, i = math.modf(X) # (-100.0, -0.13230000000000075)
def fun_e():
""" Convert the integer part to integer. """
for _ in LOOPS:
f, i = math.modf(X) # (-100.0, -0.13230000000000075)
i = int(i) # -100
if __name__ == '__main__':
cProfile.run('fun_a()')
cProfile.run('fun_b()')
cProfile.run('fun_c()')
cProfile.run('fun_d()')
cProfile.run('fun_e()')
输出:
4 function calls in 1.312 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 1.312 1.312 <string>:1(<module>)
1 1.312 1.312 1.312 1.312 new1.py:10(fun_a)
1 0.000 0.000 1.312 1.312 {built-in method builtins.exec}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
4 function calls in 1.887 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 1.887 1.887 <string>:1(<module>)
1 1.887 1.887 1.887 1.887 new1.py:17(fun_b)
1 0.000 0.000 1.887 1.887 {built-in method builtins.exec}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
5000004 function calls in 2.797 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 2.797 2.797 <string>:1(<module>)
1 1.261 1.261 2.797 2.797 new1.py:23(fun_c)
5000000 1.536 0.000 1.536 0.000 new1.py:27(modf)
1 0.000 0.000 2.797 2.797 {built-in method builtins.exec}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
5000004 function calls in 1.852 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 1.852 1.852 <string>:1(<module>)
1 1.050 1.050 1.852 1.852 new1.py:34(fun_d)
1 0.000 0.000 1.852 1.852 {built-in method builtins.exec}
5000000 0.802 0.000 0.802 0.000 {built-in method math.modf}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
5000004 function calls in 2.467 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 2.467 2.467 <string>:1(<module>)
1 1.652 1.652 2.467 2.467 new1.py:38(fun_e)
1 0.000 0.000 2.467 2.467 {built-in method builtins.exec}
5000000 0.815 0.000 0.815 0.000 {built-in method math.modf}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
注意:
使用模数语句可以更快,但是模数不能用于将负数拆分为整数和分数部分。
i, f = int(x), x*1e17%1e17/1e17 # x can not be negative