我需要的东西直接等同于CountDownLatch
,但是可以重置(保持线程安全!)。我不能使用经典的同步结构,因为它们在这种情况下根本不起作用(复杂的锁定问题)。目前,我正在创建许多CountDownLatch
个对象,每个对象都替换前一个对象。我相信这是在GC中的年轻一代(由于物体数量庞大)。您可以看到使用下面的锁存器的代码(它是ns-3网络模拟器接口的java.net
模拟的一部分)。
一些想法可能是尝试CyclicBarrier
(JDK5 +)或Phaser
(JDK7)
我可以测试代码并回复找到解决此问题的任何人,因为我是唯一可以将其插入正在运行的系统中以查看会发生什么的人:)
/**
*
*/
package kokunet;
import java.io.IOException;
import java.nio.channels.ClosedSelectorException;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import kokuks.IConnectionSocket;
import kokuks.KKSAddress;
import kokuks.KKSSocket;
import kokuks.KKSSocketListener;
/**
* KSelector
* @version 1.0
* @author Chris Dennett
*/
public class KSelector extends SelectorImpl {
// True if this Selector has been closed
private volatile boolean closed = false;
// Lock for close and cleanup
final class CloseLock {}
private final Object closeLock = new CloseLock();
private volatile boolean selecting = false;
private volatile boolean wakeup = false;
class SocketListener implements KKSSocketListener {
protected volatile CountDownLatch latch = null;
/**
*
*/
public SocketListener() {
newLatch();
}
protected synchronized CountDownLatch newLatch() {
return this.latch = new CountDownLatch(1);
}
protected synchronized void refreshReady(KKSSocket socket) {
if (!selecting) return;
synchronized (socketToChannel) {
SelChImpl ch = socketToChannel.get(socket);
if (ch == null) {
System.out.println("ks sendCB: channel not found for socket: " + socket);
return;
}
synchronized (channelToKey) {
SelectionKeyImpl sk = channelToKey.get(ch);
if (sk != null) {
if (handleSelect(sk)) {
latch.countDown();
}
}
}
}
}
@Override
public void connectionSucceeded(KKSSocket socket) {
refreshReady(socket);
}
@Override
public void connectionFailed(KKSSocket socket) {
refreshReady(socket);
}
@Override
public void dataSent(KKSSocket socket, long bytesSent) {
refreshReady(socket);
}
@Override
public void sendCB(KKSSocket socket, long bytesAvailable) {
refreshReady(socket);
}
@Override
public void onRecv(KKSSocket socket) {
refreshReady(socket);
}
@Override
public void newConnectionCreated(KKSSocket socket, KKSSocket newSocket, KKSAddress remoteaddress) {
refreshReady(socket);
}
@Override
public void normalClose(KKSSocket socket) {
wakeup();
}
@Override
public void errorClose(KKSSocket socket) {
wakeup();
}
}
protected final Map<KKSSocket, SelChImpl> socketToChannel = new HashMap<KKSSocket, SelChImpl>();
protected final Map<SelChImpl, SelectionKeyImpl> channelToKey = new HashMap<SelChImpl, SelectionKeyImpl>();
protected final SocketListener currListener = new SocketListener();
protected Thread selectingThread = null;
SelChImpl getChannelForSocket(KKSSocket s) {
synchronized (socketToChannel) {
return socketToChannel.get(s);
}
}
SelectionKeyImpl getSelKeyForChannel(KKSSocket s) {
synchronized (channelToKey) {
return channelToKey.get(s);
}
}
protected boolean markRead(SelectionKeyImpl impl) {
synchronized (impl) {
if (!impl.isValid()) return false;
impl.nioReadyOps(impl.readyOps() | SelectionKeyImpl.OP_READ);
return selectedKeys.add(impl);
}
}
protected boolean markWrite(SelectionKeyImpl impl) {
synchronized (impl) {
if (!impl.isValid()) return false;
impl.nioReadyOps(impl.readyOps() | SelectionKeyImpl.OP_WRITE);
return selectedKeys.add(impl);
}
}
protected boolean markAccept(SelectionKeyImpl impl) {
synchronized (impl) {
if (!impl.isValid()) return false;
impl.nioReadyOps(impl.readyOps() | SelectionKeyImpl.OP_ACCEPT);
return selectedKeys.add(impl);
}
}
protected boolean markConnect(SelectionKeyImpl impl) {
synchronized (impl) {
if (!impl.isValid()) return false;
impl.nioReadyOps(impl.readyOps() | SelectionKeyImpl.OP_CONNECT);
return selectedKeys.add(impl);
}
}
/**
* @param provider
*/
protected KSelector(SelectorProvider provider) {
super(provider);
}
/* (non-Javadoc)
* @see kokunet.SelectorImpl#implClose()
*/
@Override
protected void implClose() throws IOException {
provider().getApp().printMessage("implClose: closed: " + closed);
synchronized (closeLock) {
if (closed) return;
closed = true;
for (SelectionKey sk : keys) {
provider().getApp().printMessage("dereg1");
deregister((AbstractSelectionKey)sk);
provider().getApp().printMessage("dereg2");
SelectableChannel selch = sk.channel();
if (!selch.isOpen() && !selch.isRegistered())
((SelChImpl)selch).kill();
}
implCloseInterrupt();
}
}
protected void implCloseInterrupt() {
wakeup();
}
private boolean handleSelect(SelectionKey k) {
synchronized (k) {
boolean notify = false;
if (!k.isValid()) {
k.cancel();
((SelectionKeyImpl)k).channel.socket().removeListener(currListener);
return false;
}
SelectionKeyImpl ski = (SelectionKeyImpl)k;
if ((ski.interestOps() & SelectionKeyImpl.OP_READ) != 0) {
if (ski.channel.socket().getRxAvailable() > 0) {
notify |= markRead(ski);
}
}
if ((ski.interestOps() & SelectionKeyImpl.OP_WRITE) != 0) {
if (ski.channel.socket().getTxAvailable() > 0) {
notify |= markWrite(ski);
}
}
if ((ski.interestOps() & SelectionKeyImpl.OP_CONNECT) != 0) {
if (!ski.channel.socket().isConnectionless()) {
IConnectionSocket cs = (IConnectionSocket)ski.channel.socket();
if (!ski.channel.socket().isAccepting() && !cs.isConnecting() && !cs.isConnected()) {
notify |= markConnect(ski);
}
}
}
if ((ski.interestOps() & SelectionKeyImpl.OP_ACCEPT) != 0) {
//provider().getApp().printMessage("accept check: ski: " + ski + ", connectionless: " + ski.channel.socket().isConnectionless() + ", listening: " + ski.channel.socket().isListening() + ", hasPendingConn: " + (ski.channel.socket().isConnectionless() ? "nope!" : ((IConnectionSocket)ski.channel.socket()).hasPendingConnections()));
if (!ski.channel.socket().isConnectionless() && ski.channel.socket().isListening()) {
IConnectionSocket cs = (IConnectionSocket)ski.channel.socket();
if (cs.hasPendingConnections()) {
notify |= markAccept(ski);
}
}
}
return notify;
}
}
private boolean handleSelect() {
boolean notify = false;
// get initial status
for (SelectionKey k : keys) {
notify |= handleSelect(k);
}
return notify;
}
/* (non-Javadoc)
* @see kokunet.SelectorImpl#doSelect(long)
*/
@Override
protected int doSelect(long timeout) throws IOException {
processDeregisterQueue();
long timestartedms = System.currentTimeMillis();
synchronized (selectedKeys) {
synchronized (currListener) {
wakeup = false;
selectingThread = Thread.currentThread();
selecting = true;
}
try {
handleSelect();
if (!selectedKeys.isEmpty() || timeout == 0) {
return selectedKeys.size();
}
//TODO: useless op if we have keys available
for (SelectionKey key : keys) {
((SelectionKeyImpl)key).channel.socket().addListener(currListener);
}
try {
while (!wakeup && isOpen() && selectedKeys.isEmpty()) {
CountDownLatch latch = null;
synchronized (currListener) {
if (wakeup || !isOpen() || !selectedKeys.isEmpty()) {
break;
}
latch = currListener.newLatch();
}
try {
if (timeout > 0) {
long currtimems = System.currentTimeMillis();
long remainingMS = (timestartedms + timeout) - currtimems;
if (remainingMS > 0) {
latch.await(remainingMS, TimeUnit.MILLISECONDS);
} else {
break;
}
} else {
latch.await();
}
} catch (InterruptedException e) {
}
}
return selectedKeys.size();
} finally {
for (SelectionKey key : keys) {
((SelectionKeyImpl)key).channel.socket().removeListener(currListener);
}
}
} finally {
synchronized (currListener) {
selecting = false;
selectingThread = null;
wakeup = false;
}
}
}
}
/* (non-Javadoc)
* @see kokunet.SelectorImpl#implRegister(kokunet.SelectionKeyImpl)
*/
@Override
protected void implRegister(SelectionKeyImpl ski) {
synchronized (closeLock) {
if (closed) throw new ClosedSelectorException();
synchronized (channelToKey) {
synchronized (socketToChannel) {
keys.add(ski);
socketToChannel.put(ski.channel.socket(), ski.channel);
channelToKey.put(ski.channel, ski);
}
}
}
}
/* (non-Javadoc)
* @see kokunet.SelectorImpl#implDereg(kokunet.SelectionKeyImpl)
*/
@Override
protected void implDereg(SelectionKeyImpl ski) throws IOException {
synchronized (channelToKey) {
synchronized (socketToChannel) {
keys.remove(ski);
socketToChannel.remove(ski.channel.socket());
channelToKey.remove(ski.channel);
SelectableChannel selch = ski.channel();
if (!selch.isOpen() && !selch.isRegistered())
((SelChImpl)selch).kill();
}
}
}
/* (non-Javadoc)
* @see kokunet.SelectorImpl#wakeup()
*/
@Override
public Selector wakeup() {
synchronized (currListener) {
if (selecting) {
wakeup = true;
selecting = false;
selectingThread.interrupt();
selectingThread = null;
}
}
return this;
}
}
干杯,
克里斯
答案 0 :(得分:20)
我复制了CountDownLatch
并实现了一个reset()
方法,将内部Sync
类重置为其初始状态(起始计数):)似乎工作正常。没有更多不必要的对象创建\ o /由于sync
是私有的,因此无法进行子类化。嘘声。
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;
/**
* A synchronization aid that allows one or more threads to wait until
* a set of operations being performed in other threads completes.
*
* <p>A {@code CountDownLatch} is initialized with a given <em>count</em>.
* The {@link #await await} methods block until the current count reaches
* zero due to invocations of the {@link #countDown} method, after which
* all waiting threads are released and any subsequent invocations of
* {@link #await await} return immediately. This is a one-shot phenomenon
* -- the count cannot be reset. If you need a version that resets the
* count, consider using a {@link CyclicBarrier}.
*
* <p>A {@code CountDownLatch} is a versatile synchronization tool
* and can be used for a number of purposes. A
* {@code CountDownLatch} initialized with a count of one serves as a
* simple on/off latch, or gate: all threads invoking {@link #await await}
* wait at the gate until it is opened by a thread invoking {@link
* #countDown}. A {@code CountDownLatch} initialized to <em>N</em>
* can be used to make one thread wait until <em>N</em> threads have
* completed some action, or some action has been completed N times.
*
* <p>A useful property of a {@code CountDownLatch} is that it
* doesn't require that threads calling {@code countDown} wait for
* the count to reach zero before proceeding, it simply prevents any
* thread from proceeding past an {@link #await await} until all
* threads could pass.
*
* <p><b>Sample usage:</b> Here is a pair of classes in which a group
* of worker threads use two countdown latches:
* <ul>
* <li>The first is a start signal that prevents any worker from proceeding
* until the driver is ready for them to proceed;
* <li>The second is a completion signal that allows the driver to wait
* until all workers have completed.
* </ul>
*
* <pre>
* class Driver { // ...
* void main() throws InterruptedException {
* CountDownLatch startSignal = new CountDownLatch(1);
* CountDownLatch doneSignal = new CountDownLatch(N);
*
* for (int i = 0; i < N; ++i) // create and start threads
* new Thread(new Worker(startSignal, doneSignal)).start();
*
* doSomethingElse(); // don't let run yet
* startSignal.countDown(); // let all threads proceed
* doSomethingElse();
* doneSignal.await(); // wait for all to finish
* }
* }
*
* class Worker implements Runnable {
* private final CountDownLatch startSignal;
* private final CountDownLatch doneSignal;
* Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
* this.startSignal = startSignal;
* this.doneSignal = doneSignal;
* }
* public void run() {
* try {
* startSignal.await();
* doWork();
* doneSignal.countDown();
* } catch (InterruptedException ex) {} // return;
* }
*
* void doWork() { ... }
* }
*
* </pre>
*
* <p>Another typical usage would be to divide a problem into N parts,
* describe each part with a Runnable that executes that portion and
* counts down on the latch, and queue all the Runnables to an
* Executor. When all sub-parts are complete, the coordinating thread
* will be able to pass through await. (When threads must repeatedly
* count down in this way, instead use a {@link CyclicBarrier}.)
*
* <pre>
* class Driver2 { // ...
* void main() throws InterruptedException {
* CountDownLatch doneSignal = new CountDownLatch(N);
* Executor e = ...
*
* for (int i = 0; i < N; ++i) // create and start threads
* e.execute(new WorkerRunnable(doneSignal, i));
*
* doneSignal.await(); // wait for all to finish
* }
* }
*
* class WorkerRunnable implements Runnable {
* private final CountDownLatch doneSignal;
* private final int i;
* WorkerRunnable(CountDownLatch doneSignal, int i) {
* this.doneSignal = doneSignal;
* this.i = i;
* }
* public void run() {
* try {
* doWork(i);
* doneSignal.countDown();
* } catch (InterruptedException ex) {} // return;
* }
*
* void doWork() { ... }
* }
*
* </pre>
*
* <p>Memory consistency effects: Actions in a thread prior to calling
* {@code countDown()}
* <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
* actions following a successful return from a corresponding
* {@code await()} in another thread.
*
* @since 1.5
* @author Doug Lea
*/
public class ResettableCountDownLatch {
/**
* Synchronization control For CountDownLatch.
* Uses AQS state to represent count.
*/
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
public final int startCount;
Sync(int count) {
this.startCount = count;
setState(startCount);
}
int getCount() {
return getState();
}
public int tryAcquireShared(int acquires) {
return getState() == 0? 1 : -1;
}
public boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
public void reset() {
setState(startCount);
}
}
private final Sync sync;
/**
* Constructs a {@code CountDownLatch} initialized with the given count.
*
* @param count the number of times {@link #countDown} must be invoked
* before threads can pass through {@link #await}
* @throws IllegalArgumentException if {@code count} is negative
*/
public ResettableCountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
/**
* Causes the current thread to wait until the latch has counted down to
* zero, unless the thread is {@linkplain Thread#interrupt interrupted}.
*
* <p>If the current count is zero then this method returns immediately.
*
* <p>If the current count is greater than zero then the current
* thread becomes disabled for thread scheduling purposes and lies
* dormant until one of two things happen:
* <ul>
* <li>The count reaches zero due to invocations of the
* {@link #countDown} method; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread.
* </ul>
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* @throws InterruptedException if the current thread is interrupted
* while waiting
*/
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public void reset() {
sync.reset();
}
/**
* Causes the current thread to wait until the latch has counted down to
* zero, unless the thread is {@linkplain Thread#interrupt interrupted},
* or the specified waiting time elapses.
*
* <p>If the current count is zero then this method returns immediately
* with the value {@code true}.
*
* <p>If the current count is greater than zero then the current
* thread becomes disabled for thread scheduling purposes and lies
* dormant until one of three things happen:
* <ul>
* <li>The count reaches zero due to invocations of the
* {@link #countDown} method; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
* <li>The specified waiting time elapses.
* </ul>
*
* <p>If the count reaches zero then the method returns with the
* value {@code true}.
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* <p>If the specified waiting time elapses then the value {@code false}
* is returned. If the time is less than or equal to zero, the method
* will not wait at all.
*
* @param timeout the maximum time to wait
* @param unit the time unit of the {@code timeout} argument
* @return {@code true} if the count reached zero and {@code false}
* if the waiting time elapsed before the count reached zero
* @throws InterruptedException if the current thread is interrupted
* while waiting
*/
public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
/**
* Decrements the count of the latch, releasing all waiting threads if
* the count reaches zero.
*
* <p>If the current count is greater than zero then it is decremented.
* If the new count is zero then all waiting threads are re-enabled for
* thread scheduling purposes.
*
* <p>If the current count equals zero then nothing happens.
*/
public void countDown() {
sync.releaseShared(1);
}
/**
* Returns the current count.
*
* <p>This method is typically used for debugging and testing purposes.
*
* @return the current count
*/
public long getCount() {
return sync.getCount();
}
/**
* Returns a string identifying this latch, as well as its state.
* The state, in brackets, includes the String {@code "Count ="}
* followed by the current count.
*
* @return a string identifying this latch, as well as its state
*/
public String toString() {
return super.toString() + "[Count = " + sync.getCount() + "]";
}
}
答案 1 :(得分:3)
根据@Fidel -s的回答,我为ResettableCountDownLatch做了直接替换。我做的改变
mLatch
是private volatile
mInitialCount
是private final
await()
的返回类型已更改为void。否则,原始代码也很酷。所以,这是完整的增强代码:
public class ResettableCountDownLatch {
private final int initialCount;
private volatile CountDownLatch latch;
public ResettableCountDownLatch(int count) {
initialCount = count;
latch = new CountDownLatch(count);
}
public void reset() {
latch = new CountDownLatch(initialCount);
}
public void countDown() {
latch.countDown();
}
public void await() throws InterruptedException {
latch.await();
}
public boolean await(long timeout, TimeUnit unit) throws InterruptedException {
return latch.await(timeout, unit);
}
}
基于@Systemplanet的评论,这是reset()
的更安全版本:
// An atomic reference is required because reset() is not that atomic anymore, not even with `volatile`.
private final AtomicReference<CountDownLatch> latchHolder = new AtomicReference<>();
public void reset() {
// obtaining a local reference for modifying the required latch
final CountDownLatch oldLatch = latchHolder.getAndSet(null);
if (oldLatch != null) {
// checking the count each time to prevent unnecessary countdowns due to parallel countdowns
while (0L < oldLatch.getCount()) {
oldLatch.countDown();
}
}
}
基本上,它是简单性和安全性之间的选择。即如果您愿意将责任移交给代码的客户,那么在null
中设置引用reset()
就足够了。
另一方面,如果您想让这段代码的用户轻松一点,那么您需要使用更多技巧。
答案 2 :(得分:2)
我不确定这是否存在致命缺陷,但我最近遇到了同样的问题并通过每次我想重置时只是实例化一个新的CountDownLatch对象来解决它。像这样:
服务员:
bla();
latch.await();
//now the latch has counted down to 0
blabla();
CountDowner
foo();
latch.countDown();
//now the latch has counted down to 0
latch = new CountDownLatch(1);
Waiter.receiveReferenceToNewLatch(latch);
bar();
显然这是一个沉重的抽象,但到目前为止它对我有用,并且不要求你修改任何类定义。
答案 3 :(得分:1)
Phaser有更多选项,我们可以使用它来实现resettable countdownLatch。
请阅读以下网站的基本概念
http://netjs.blogspot.in/2016/01/phaser-in-java-concurrency.html
import java.util.concurrent.Phaser;
/**
* Resettable countdownLatch using phaser
*/
public class PhaserExample {
public static void main(String[] args) throws InterruptedException {
Phaser phaser = new Phaser(3); // you can use constructor hint or
// register() or mixture of both
// register self... so parties are incremented to 4 (3+1) now
phaser.register();
//register is one time call for all the phases.
//means no need to register for every phase
int phasecount = phaser.getPhase();
System.out.println("Phasecount is " + phasecount);
new PhaserExample().testPhaser(phaser, 2000);
new PhaserExample().testPhaser(phaser, 4000);
new PhaserExample().testPhaser(phaser, 6000);
// similar to await() in countDownLatch/CyclicBarrier
// parties are decremented to 3 (4+1) now
phaser.arriveAndAwaitAdvance();
// once all the thread arrived at same level, barrier opens
System.out.println("Barrier has broken.");
phasecount = phaser.getPhase();
System.out.println("Phasecount is " + phasecount);
//second phase
new PhaserExample().testPhaser(phaser, 2000);
new PhaserExample().testPhaser(phaser, 4000);
new PhaserExample().testPhaser(phaser, 6000);
phaser.arriveAndAwaitAdvance();
// once all the thread arrived at same level, barrier opens
System.out.println("Barrier has broken.");
phasecount = phaser.getPhase();
System.out.println("Phasecount is " + phasecount);
}
private void testPhaser(final Phaser phaser, final int sleepTime) {
// phaser.register(); //Already constructor hint is given so not
// required
new Thread() {
@Override
public void run() {
try {
Thread.sleep(sleepTime);
System.out.println(Thread.currentThread().getName() + " arrived");
// phaser.arrive(); //similar to CountDownLatch#countDown()
phaser.arriveAndAwaitAdvance();// thread will wait till Barrier opens
// arriveAndAwaitAdvance is similar to CyclicBarrier#await()
}
catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " after passing barrier");
}
}.start();
}
}
答案 4 :(得分:0)
另一个直接替代
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
public class ResettableCountDownLatch {
int mInitialCount;
CountDownLatch mLatch;
public ResettableCountDownLatch(int count) {
mInitialCount = count;
mLatch = new CountDownLatch(count);
}
public void reset() {
mLatch = new CountDownLatch(mInitialCount);
}
public void countDown() {
mLatch.countDown();
}
public boolean await() throws InterruptedException {
boolean result = mLatch.await();
return result;
}
public boolean await(long timeout, TimeUnit unit) throws InterruptedException {
boolean result = mLatch.await(timeout, unit);
return result;
}
}
答案 5 :(得分:0)
好像您想将异步I / O转换为同步。使用异步I / O的整个想法是避免线程,但是CountDownLatch需要使用线程。这是您问题中明显的矛盾。因此,您可以:
答案 6 :(得分:0)
public class ResettableLatch {
private static final class Sync extends AbstractQueuedSynchronizer {
Sync(int count) {
setState(count);
}
int getCount() {
return getState();
}
protected int tryAcquireShared(int acquires) {
return getState() == 0 ? 1 : -1;
}
public void reset(int count) {
setState(count);
}
protected boolean tryReleaseShared(int releases) {
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c - 1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}
private final Sync sync;
public ResettableLatch(int count) {
if (count < 0)
throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public boolean await(long timeout, TimeUnit unit) throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
public void countDown() {
sync.releaseShared(1);
}
public long getCount() {
return sync.getCount();
}
public void reset(int count) {
sync.reset(count);
}
}
这对我有用。
答案 7 :(得分:0)
根据我从OP的说明和源代码所能理解的内容,可重设的CountDownLatch
对于他要解决的问题并不是一个足够的概念。 The documentation of the CountDownLatch本身将OP的用例提到为以1计数初始化的简单门:
CountDownLatch
初始化为1可以很简单 开/关闩锁或门:调用await
的所有线程在门处等待 直到它被调用countDown
的线程打开。
,但是CountDownLatch
的实现没有朝这个方向发展。
所以,我自己遇到了与OP类似的问题,因此决定引入一个具有以下属性的SimpleGate
类:
许可数量为1,这意味着它可以处于On
或Off
状态; </ p>
有一个专用线程,称为Gate Keeper
,仅允许进入shut off
或open up
门;
守门权可以转让;
打开Gate可以立即使试图come through
Gate的线程执行该操作(其他答案中忽略了这个非常合逻辑的功能);
由于预计线程争用较高,因此可以选择公平性,这可以减少线程 barging 的影响。
public class SimpleGate {
private static class Sync extends AbstractQueuedSynchronizer {
// State
private static final int SHUT = 1;
private static final int OPEN = 0;
private boolean fair;
public void setFair(boolean fair) {
this.fair = fair;
}
public void shutOff() {
super.setState(SHUT);
}
@Override
protected int tryAcquireShared(int arg) {
if (fair && super.hasQueuedPredecessors())
return -1;
return super.getState() == OPEN ? 1 : -1;
}
@Override
protected boolean tryReleaseShared(int arg) {
super.setState(OPEN);
return true;
}
}
private Sync sync = new Sync();
private volatile Thread gateKeeper = Thread.currentThread();
public SimpleGate(){
this(true);
}
public SimpleGate(boolean shutOff){
this(shutOff, false);
}
public SimpleGate(boolean shutOff, boolean fair){
if (shutOff)
sync.shutOff();
sync.setFair(fair);
}
public void comeThrough(){
if (Thread.currentThread() == gateKeeper)
throw new IllegalStateException("Gate Keeper thread is not supposed to come through the gate");
sync.acquireShared(0);
}
public void shutOff(){
if (Thread.currentThread() != gateKeeper)
throw new IllegalStateException("Only a Gate Keeper thread is allowed to shut off");
sync.shutOff();
}
public void openUp(){
if (Thread.currentThread() != gateKeeper)
throw new IllegalStateException("Only a Gate Keeper thread is allowed to open up");
sync.releaseShared(0);
}
public void transferOwnership(Thread newGateKeeper){
this.gateKeeper = newGateKeeper;
}
// an addition of waiting interruptibly and waiting for specified amount of time,
//if they are needed, is trivial
}