设置LSTM模型进行发电预测的问题

时间:2021-01-29 12:32:38

标签: lstm

我是机器学习的新手。我试图开发一个 LSTM 模型来预测数据。模型结构如下。

Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
lstm_3 (LSTM)                (None, 1, 50)             11400     
_________________________________________________________________
dropout_4 (Dropout)          (None, 1, 50)             0         
_________________________________________________________________
lstm_4 (LSTM)                (None, 1, 50)             20200     
_________________________________________________________________
dropout_5 (Dropout)          (None, 1, 50)             0         
_________________________________________________________________
lstm_5 (LSTM)                (None, 1, 50)             20200     
_________________________________________________________________
dropout_6 (Dropout)          (None, 1, 50)             0         
_________________________________________________________________
dropout_7 (Dropout)          (None, 1, 50)             0         
_________________________________________________________________
dense_1 (Dense)              (None, 1, 2)              102       
=================================================================
Total params: 51,902
Trainable params: 51,902
Non-trainable params: 0
_________________________________________________________________

我用于训练的部分数据如下(第二到六列是输入,第七和第八列是输出): Training Data

然而,损失并没有减少,系统的预测是平均值而不是遵循系统的模式。附上两张图片。我不知道如何进一步改进它。 Loss Function Blue is original and orange is predicted

请指导我如何/如何进一步改进它。任何参考资料都会有所帮助!

0 个答案:

没有答案