将 any()、all() 等与 dplyr::filter() + dplyr::across() 组合一起使用的正确方法是什么?

时间:2021-01-20 14:23:22

标签: r filter dplyr any across

假设我有以下 data.frame df

#         col1        col2       col3 othercol1 othercol11
# 1      Hello WHAT_hello2      Hello        10          3
# 2 WHAT_hello  WHAT_hello WHAT_hello         1          2
# 3      Hello       Hello      Hello         9          1

我想处理 data.frame 以仅保留那些在 WHAT_col1 或 {{1} 中的至少一个中包含前缀 col2 的行}.

现在我知道我可以用 col3 轻松做到这一点,但我试图使用 |dplyr::across 以及 tidyselect::matches 和 {{1} } 将 base::any 指向右列。但这似乎不起作用,即使与 stringr::str_detect 结合使用也是如此。

那么这里的正确方法是什么?我做错了什么?

我想使用 dplyr::filter + dplyr::rowwise 主要是因为我可能不一定事先知道我在实际数据集中有多少这样的列。

以下是我的示例(数据 + 代码):

across

2 个答案:

答案 0 :(得分:3)

对于应用于行而不是列的函数,您可以将 c_acrossrowwise 结合使用:

df %>% 
  rowwise() %>% 
  filter(any(str_detect(c_across(matches('^col')), '^WHAT')))

# # A tibble: 2 x 5
# # Rowwise: 
#   col1       col2        col3       othercol1 othercol11
#   <chr>      <chr>       <chr>          <int>      <int>
# 1 Hello      WHAT_hello2 Hello              9          7
# 2 WHAT_hello WHAT_hello  WHAT_hello         3         10

或者,将 acrossrowSums 一起使用:

row_lgl <- 
  df %>% 
    transmute(across(.cols = matches("^col"), .fns = ~ str_detect(.x, "^WHAT"))) %>% 
    rowSums %>% 
    '>'(0)
           
df %>% 
  filter(row_lgl)
#         col1        col2       col3 othercol1 othercol11
# 1      Hello WHAT_hello2      Hello         9          7
# 2 WHAT_hello  WHAT_hello WHAT_hello         3         10

答案 1 :(得分:1)

使用base

df <- data.frame(col1 = c("Hello", "WHAT_hello", "Hello"), 
                 col2 = c("WHAT_hello2", "WHAT_hello", "Hello"), 
                 col3 = c("Hello", "WHAT_hello", "Hello"),
                 othercol1 = sample(1:10, 3), 
                 othercol11 = sample(1:10, 3), 
                 stringsAsFactors = FALSE)

df 
#>         col1        col2       col3 othercol1 othercol11
#> 1      Hello WHAT_hello2      Hello         1          9
#> 2 WHAT_hello  WHAT_hello WHAT_hello         3          2
#> 3      Hello       Hello      Hello         4          8

df[apply(df, 1, function(x) sum(grepl(pattern = "^WHAT_", x = x))) != 0, ]
#>         col1        col2       col3 othercol1 othercol11
#> 1      Hello WHAT_hello2      Hello         1          9
#> 2 WHAT_hello  WHAT_hello WHAT_hello         3          2

reprex package (v0.3.0) 于 2021 年 1 月 20 日创建

使用tidyverse

library(tidyverse)
df <- data.frame(col1 = c("Hello", "WHAT_hello", "Hello"), 
                 col2 = c("WHAT_hello2", "WHAT_hello", "Hello"), 
                 col3 = c("Hello", "WHAT_hello", "Hello"),
                 othercol1 = sample(1:10, 3), 
                 othercol11 = sample(1:10, 3), 
                 stringsAsFactors = FALSE)


df %>% 
  filter(rowSums(across(.cols = where(is.character), .fns = ~ str_detect(.x, "^WHAT"))) != 0)
#>         col1        col2       col3 othercol1 othercol11
#> 1      Hello WHAT_hello2      Hello         1          3
#> 2 WHAT_hello  WHAT_hello WHAT_hello         7          4

reprex package (v0.3.0) 于 2021 年 1 月 20 日创建