我在理解上一版斯坦福NLP工具中对coref解析器所做的更改时遇到了一些麻烦。 例如,下面是一个句子和相应的CorefChainAnnotation:
The atom is a basic unit of matter, it consists of a dense central nucleus surrounded by a cloud of negatively charged electrons.
{1=[1 1, 1 2], 5=[1 3], 7=[1 4], 9=[1 5]}
我不确定我理解这些数字的含义。查看源代码也无济于事。
谢谢
答案 0 :(得分:17)
我一直在使用coreference依赖关系图,我开始使用这个问题的另一个答案。过了一会儿,虽然我意识到上面这个算法并不完全正确。它产生的输出甚至没有接近我修改过的版本。
对于使用这篇文章的任何人来说,这里是我最终得到的算法,它也过滤掉了自我引用,因为每个代表性的注意事项也提到自己,很多提及只引用自己。
Map<Integer, CorefChain> coref = document.get(CorefChainAnnotation.class);
for(Map.Entry<Integer, CorefChain> entry : coref.entrySet()) {
CorefChain c = entry.getValue();
//this is because it prints out a lot of self references which aren't that useful
if(c.getCorefMentions().size() <= 1)
continue;
CorefMention cm = c.getRepresentativeMention();
String clust = "";
List<CoreLabel> tks = document.get(SentencesAnnotation.class).get(cm.sentNum-1).get(TokensAnnotation.class);
for(int i = cm.startIndex-1; i < cm.endIndex-1; i++)
clust += tks.get(i).get(TextAnnotation.class) + " ";
clust = clust.trim();
System.out.println("representative mention: \"" + clust + "\" is mentioned by:");
for(CorefMention m : c.getCorefMentions()){
String clust2 = "";
tks = document.get(SentencesAnnotation.class).get(m.sentNum-1).get(TokensAnnotation.class);
for(int i = m.startIndex-1; i < m.endIndex-1; i++)
clust2 += tks.get(i).get(TextAnnotation.class) + " ";
clust2 = clust2.trim();
//don't need the self mention
if(clust.equals(clust2))
continue;
System.out.println("\t" + clust2);
}
}
您的例句的最终输出如下:
representative mention: "a basic unit of matter" is mentioned by:
The atom
it
通常“原子”最终成为代表性的提及,但在这种情况下并不令人惊讶。输出稍微更精确的另一个例子是以下句子:
革命战争发生在18世纪,这是美国的第一场战争。
产生以下输出:
representative mention: "The Revolutionary War" is mentioned by:
it
the first war in the United States
答案 1 :(得分:8)
第一个数字是一个集群ID(代表标记,代表同一个实体),请参阅SieveCoreferenceSystem#coref(Document)
的源代码。对数不包括CorefChain#toString():
public String toString(){
return position.toString();
}
其中position是一组提及实体的位置对(让他们使用CorefChain.getCorefMentions()
)。以下是完整代码的示例(在groovy中),其中显示了如何从位置到令牌:
class Example {
public static void main(String[] args) {
Properties props = new Properties();
props.put("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
props.put("dcoref.score", true);
pipeline = new StanfordCoreNLP(props);
Annotation document = new Annotation("The atom is a basic unit of matter, it consists of a dense central nucleus surrounded by a cloud of negatively charged electrons.");
pipeline.annotate(document);
Map<Integer, CorefChain> graph = document.get(CorefChainAnnotation.class);
println aText
for(Map.Entry<Integer, CorefChain> entry : graph) {
CorefChain c = entry.getValue();
println "ClusterId: " + entry.getKey();
CorefMention cm = c.getRepresentativeMention();
println "Representative Mention: " + aText.subSequence(cm.startIndex, cm.endIndex);
List<CorefMention> cms = c.getCorefMentions();
println "Mentions: ";
cms.each { it ->
print aText.subSequence(it.startIndex, it.endIndex) + "|";
}
}
}
}
输出(我不明白's'来自哪里):
The atom is a basic unit of matter, it consists of a dense central nucleus surrounded by a cloud of negatively charged electrons.
ClusterId: 1
Representative Mention: he
Mentions: he|atom |s|
ClusterId: 6
Representative Mention: basic unit
Mentions: basic unit |
ClusterId: 8
Representative Mention: unit
Mentions: unit |
ClusterId: 10
Representative Mention: it
Mentions: it |
答案 2 :(得分:0)
这些是注释者最近的结果。
标记如下:
[Sentence number,'id'] Cluster_no Text_Associated
属于同一群集的文本引用相同的上下文。