这是一个蛮力尝试解决问题,但它没有给出正确的答案。该程序运行,但它没有产生所需的输出。我相信逻辑和程序是正确的。
这是problem of a famous site(不想破坏者)
它要求产生最长的Collatz链的数量低于一百万。
class Euler
{
public static void main (String args[])
{
long len,longLength=0;
for(long i =3;i<=1000000;i++)
{
len = Euler14.numFucs(i);
System.out.println("Ans"+len+"\t"+i);
if(len>longLength)
longLength=len;
}
System.out.println(longLength);
}
public static long numFucs(long num)
{
long count=1,$test=0;
while(num>1)
{
if(num%2==0)
{
num=num/2;
}
else
{
num=3*num+1;
}
count++;
}
//System.out.println("\tEnd");
return count;
}
}
答案 0 :(得分:3)
嗯,作为项目欧拉的粉丝,我觉得给你正确答案的代码是很划算的。您输出的是最长链的长度,而不是获得它的数量。如果你真的想要,我可以向你展示需要改变的一行,但老实说,这是一个简单的解决方案,我挑战你自己做。
答案 1 :(得分:1)
如果程序假设计算Collatz Conjecture中的步数,那么实现对我来说就好了。
OEIS Sequence A008908描述的数字序列。
这是你的程序和一些调试输出。
class Test {
public static void main(String args[]) {
long len, longLength = 0;
System.out.println(Test.numFucs(13));
String[] correct = ("1, 1, 2, 8, 3, 6, 9, 17, 4, 20, 7, 15, 10, 10, 18,"
+ " 18, 5, 13, 21, 21, 8, 8, 16, 16, 11, 24, 11, 112, "
+ "19, 19, 19, 107, 6, 27, 14, 14, 22, 22, 22, 35, 9, "
+ "110, 9, 30, 17, 17, 17, 105, 12, 25, 25, 25, 12, "
+ "12, 113, 113, 20, 33, 20, 33, 20, 20, 108, 108, 7,"
+ " 28, 28, 28, 15, 15, 15, 103").split(", ");
for (int i = 0; i <= 70; i++) {
len = Test.numFucs(i);
System.out.printf("i = %2d, Correct %3s, Computed: %3d%n", i,
correct[i], len);
if (len > longLength)
longLength = len;
}
System.out.println(longLength);
}
public static long numFucs(long num) {
long count = 1;
while (num > 1) {
if (num % 2 == 0) {
num = num / 2;
} else {
num = 3 * num + 1;
}
count++;
}
// System.out.println(count);
return count;
}
}
<强>输出:强>
i = 0, Correct 1, Computed: 1
i = 1, Correct 1, Computed: 1
i = 2, Correct 2, Computed: 2
i = 3, Correct 8, Computed: 8
i = 4, Correct 3, Computed: 3
i = 5, Correct 6, Computed: 6
i = 6, Correct 9, Computed: 9
i = 7, Correct 17, Computed: 17
i = 8, Correct 4, Computed: 4
i = 9, Correct 20, Computed: 20
i = 10, Correct 7, Computed: 7
i = 11, Correct 15, Computed: 15
i = 12, Correct 10, Computed: 10
i = 13, Correct 10, Computed: 10
i = 14, Correct 18, Computed: 18
i = 15, Correct 18, Computed: 18
i = 16, Correct 5, Computed: 5
...
正如您所看到的,它遵循OEIS序列。
错误必须是其他地方。