我正在寻找从BufferedImage
获取像素数据(int[][]
形式)的最快方法。我的目标是能够使用(x, y)
从图像中处理像素int[x][y]
。我找到的所有方法都没有这样做(大多数方法返回int[]
)。
答案 0 :(得分:160)
我正在玩这个相同的主题,这是访问像素的最快方法。我目前知道有两种方法:
getRGB()
方法。使用以下方法直接访问像素数组:
byte[] pixels = ((DataBufferByte) bufferedImage.getRaster().getDataBuffer()).getData();
如果您正在处理大型图像并且性能是一个问题,那么第一种方法绝对不是您的选择。 getRGB()
方法将alpha,red,green和blue值组合成一个int,然后返回结果,在大多数情况下,你会反过来获取这些值。
第二种方法将直接为每个像素返回红色,绿色和蓝色值,如果有alpha通道,则会添加alpha值。使用这种方法在计算指数方面更难,但比第一种方法快得多。
在我的应用程序中,通过从第一种方法切换到第二种方法,我能够将处理像素的时间减少90%以上!
以下是我为比较两种方法而进行的比较:
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
import java.io.IOException;
import javax.imageio.ImageIO;
public class PerformanceTest {
public static void main(String[] args) throws IOException {
BufferedImage hugeImage = ImageIO.read(PerformanceTest.class.getResource("12000X12000.jpg"));
System.out.println("Testing convertTo2DUsingGetRGB:");
for (int i = 0; i < 10; i++) {
long startTime = System.nanoTime();
int[][] result = convertTo2DUsingGetRGB(hugeImage);
long endTime = System.nanoTime();
System.out.println(String.format("%-2d: %s", (i + 1), toString(endTime - startTime)));
}
System.out.println("");
System.out.println("Testing convertTo2DWithoutUsingGetRGB:");
for (int i = 0; i < 10; i++) {
long startTime = System.nanoTime();
int[][] result = convertTo2DWithoutUsingGetRGB(hugeImage);
long endTime = System.nanoTime();
System.out.println(String.format("%-2d: %s", (i + 1), toString(endTime - startTime)));
}
}
private static int[][] convertTo2DUsingGetRGB(BufferedImage image) {
int width = image.getWidth();
int height = image.getHeight();
int[][] result = new int[height][width];
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
result[row][col] = image.getRGB(col, row);
}
}
return result;
}
private static int[][] convertTo2DWithoutUsingGetRGB(BufferedImage image) {
final byte[] pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
final int width = image.getWidth();
final int height = image.getHeight();
final boolean hasAlphaChannel = image.getAlphaRaster() != null;
int[][] result = new int[height][width];
if (hasAlphaChannel) {
final int pixelLength = 4;
for (int pixel = 0, row = 0, col = 0; pixel < pixels.length; pixel += pixelLength) {
int argb = 0;
argb += (((int) pixels[pixel] & 0xff) << 24); // alpha
argb += ((int) pixels[pixel + 1] & 0xff); // blue
argb += (((int) pixels[pixel + 2] & 0xff) << 8); // green
argb += (((int) pixels[pixel + 3] & 0xff) << 16); // red
result[row][col] = argb;
col++;
if (col == width) {
col = 0;
row++;
}
}
} else {
final int pixelLength = 3;
for (int pixel = 0, row = 0, col = 0; pixel < pixels.length; pixel += pixelLength) {
int argb = 0;
argb += -16777216; // 255 alpha
argb += ((int) pixels[pixel] & 0xff); // blue
argb += (((int) pixels[pixel + 1] & 0xff) << 8); // green
argb += (((int) pixels[pixel + 2] & 0xff) << 16); // red
result[row][col] = argb;
col++;
if (col == width) {
col = 0;
row++;
}
}
}
return result;
}
private static String toString(long nanoSecs) {
int minutes = (int) (nanoSecs / 60000000000.0);
int seconds = (int) (nanoSecs / 1000000000.0) - (minutes * 60);
int millisecs = (int) ( ((nanoSecs / 1000000000.0) - (seconds + minutes * 60)) * 1000);
if (minutes == 0 && seconds == 0)
return millisecs + "ms";
else if (minutes == 0 && millisecs == 0)
return seconds + "s";
else if (seconds == 0 && millisecs == 0)
return minutes + "min";
else if (minutes == 0)
return seconds + "s " + millisecs + "ms";
else if (seconds == 0)
return minutes + "min " + millisecs + "ms";
else if (millisecs == 0)
return minutes + "min " + seconds + "s";
return minutes + "min " + seconds + "s " + millisecs + "ms";
}
}
你能猜出输出吗? ;)
Testing convertTo2DUsingGetRGB:
1 : 16s 911ms
2 : 16s 730ms
3 : 16s 512ms
4 : 16s 476ms
5 : 16s 503ms
6 : 16s 683ms
7 : 16s 477ms
8 : 16s 373ms
9 : 16s 367ms
10: 16s 446ms
Testing convertTo2DWithoutUsingGetRGB:
1 : 1s 487ms
2 : 1s 940ms
3 : 1s 785ms
4 : 1s 848ms
5 : 1s 624ms
6 : 2s 13ms
7 : 1s 968ms
8 : 1s 864ms
9 : 1s 673ms
10: 2s 86ms
BUILD SUCCESSFUL (total time: 3 minutes 10 seconds)
答案 1 :(得分:22)
这样的东西?
int[][] pixels = new int[w][h];
for( int i = 0; i < w; i++ )
for( int j = 0; j < h; j++ )
pixels[i][j] = img.getRGB( i, j );
答案 2 :(得分:15)
我发现莫塔的回答让我的速度提高了10倍 - 所以感谢莫塔。
我已经将代码包装在一个方便的类中,该类在构造函数中获取BufferedImage并公开了一个等效的getRBG(x,y)方法,该方法使用BufferedImage.getRGB(x,y)代替代码
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
public class FastRGB
{
private int width;
private int height;
private boolean hasAlphaChannel;
private int pixelLength;
private byte[] pixels;
FastRGB(BufferedImage image)
{
pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
width = image.getWidth();
height = image.getHeight();
hasAlphaChannel = image.getAlphaRaster() != null;
pixelLength = 3;
if (hasAlphaChannel)
{
pixelLength = 4;
}
}
int getRGB(int x, int y)
{
int pos = (y * pixelLength * width) + (x * pixelLength);
int argb = -16777216; // 255 alpha
if (hasAlphaChannel)
{
argb = (((int) pixels[pos++] & 0xff) << 24); // alpha
}
argb += ((int) pixels[pos++] & 0xff); // blue
argb += (((int) pixels[pos++] & 0xff) << 8); // green
argb += (((int) pixels[pos++] & 0xff) << 16); // red
return argb;
}
}
答案 3 :(得分:9)
除非您的BufferedImage来自单色位图,否则Mota的答案很棒。单色位图的像素只有2个可能的值(例如0 =黑色,1 =白色)。当使用单色位图时,
final byte[] pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
调用以这样的方式返回原始像素阵列数据,即每个字节包含多个像素。
因此,当您使用单色位图图像创建BufferedImage对象时,这是您要使用的算法:
/**
* This returns a true bitmap where each element in the grid is either a 0
* or a 1. A 1 means the pixel is white and a 0 means the pixel is black.
*
* If the incoming image doesn't have any pixels in it then this method
* returns null;
*
* @param image
* @return
*/
public static int[][] convertToArray(BufferedImage image)
{
if (image == null || image.getWidth() == 0 || image.getHeight() == 0)
return null;
// This returns bytes of data starting from the top left of the bitmap
// image and goes down.
// Top to bottom. Left to right.
final byte[] pixels = ((DataBufferByte) image.getRaster()
.getDataBuffer()).getData();
final int width = image.getWidth();
final int height = image.getHeight();
int[][] result = new int[height][width];
boolean done = false;
boolean alreadyWentToNextByte = false;
int byteIndex = 0;
int row = 0;
int col = 0;
int numBits = 0;
byte currentByte = pixels[byteIndex];
while (!done)
{
alreadyWentToNextByte = false;
result[row][col] = (currentByte & 0x80) >> 7;
currentByte = (byte) (((int) currentByte) << 1);
numBits++;
if ((row == height - 1) && (col == width - 1))
{
done = true;
}
else
{
col++;
if (numBits == 8)
{
currentByte = pixels[++byteIndex];
numBits = 0;
alreadyWentToNextByte = true;
}
if (col == width)
{
row++;
col = 0;
if (!alreadyWentToNextByte)
{
currentByte = pixels[++byteIndex];
numBits = 0;
}
}
}
}
return result;
}
答案 4 :(得分:4)
如果有用,试试这个:
BufferedImage imgBuffer = ImageIO.read(new File("c:\\image.bmp"));
byte[] pixels = (byte[])imgBuffer.getRaster().getDataElements(0, 0, imgBuffer.getWidth(), imgBuffer.getHeight(), null);
答案 5 :(得分:1)
这对我有用:
BufferedImage bufImgs = ImageIO.read(new File("c:\\adi.bmp"));
double[][] data = new double[][];
bufImgs.getData().getPixels(0,0,bufImgs.getWidth(),bufImgs.getHeight(),data[i]);
答案 6 :(得分:1)
这里是here中发现的另一个FastRGB实现:
public class FastRGB {
public int width;
public int height;
private boolean hasAlphaChannel;
private int pixelLength;
private byte[] pixels;
FastRGB(BufferedImage image) {
pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
width = image.getWidth();
height = image.getHeight();
hasAlphaChannel = image.getAlphaRaster() != null;
pixelLength = 3;
if (hasAlphaChannel)
pixelLength = 4;
}
short[] getRGB(int x, int y) {
int pos = (y * pixelLength * width) + (x * pixelLength);
short rgb[] = new short[4];
if (hasAlphaChannel)
rgb[3] = (short) (pixels[pos++] & 0xFF); // Alpha
rgb[2] = (short) (pixels[pos++] & 0xFF); // Blue
rgb[1] = (short) (pixels[pos++] & 0xFF); // Green
rgb[0] = (short) (pixels[pos++] & 0xFF); // Red
return rgb;
}
}
这是什么?
通过BufferedImage的getRGB方法逐像素读取图像非常慢,此类就是解决方案。
这个想法是通过向对象提供一个BufferedImage实例来构造该对象,然后该对象立即读取所有数据并将它们存储在数组中。一旦想要获取像素,就调用getRGB
依赖项
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
注意事项
尽管FastRGB可以更快地读取像素,但由于它仅存储图像的副本,因此可能导致较高的内存使用率。因此,如果内存中有4MB的BufferedImage,则创建FastRGB实例后,内存使用量将变为8MB。但是,您可以在创建FastRGB之后回收BufferedImage实例。
在RAM成为瓶颈的Android手机等设备上使用它时,请小心不要陷入 OutOfMemoryException