以下代码使用JSONArray
和JSONObject
将ResultSet
转换为JSON字符串。
import org.json.JSONArray;
import org.json.JSONObject;
import org.json.JSONException;
import java.sql.SQLException;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
public class ResultSetConverter {
public static JSONArray convert( ResultSet rs )
throws SQLException, JSONException
{
JSONArray json = new JSONArray();
ResultSetMetaData rsmd = rs.getMetaData();
while(rs.next()) {
int numColumns = rsmd.getColumnCount();
JSONObject obj = new JSONObject();
for (int i=1; i<numColumns+1; i++) {
String column_name = rsmd.getColumnName(i);
if(rsmd.getColumnType(i)==java.sql.Types.ARRAY){
obj.put(column_name, rs.getArray(column_name));
}
else if(rsmd.getColumnType(i)==java.sql.Types.BIGINT){
obj.put(column_name, rs.getInt(column_name));
}
else if(rsmd.getColumnType(i)==java.sql.Types.BOOLEAN){
obj.put(column_name, rs.getBoolean(column_name));
}
else if(rsmd.getColumnType(i)==java.sql.Types.BLOB){
obj.put(column_name, rs.getBlob(column_name));
}
else if(rsmd.getColumnType(i)==java.sql.Types.DOUBLE){
obj.put(column_name, rs.getDouble(column_name));
}
else if(rsmd.getColumnType(i)==java.sql.Types.FLOAT){
obj.put(column_name, rs.getFloat(column_name));
}
else if(rsmd.getColumnType(i)==java.sql.Types.INTEGER){
obj.put(column_name, rs.getInt(column_name));
}
else if(rsmd.getColumnType(i)==java.sql.Types.NVARCHAR){
obj.put(column_name, rs.getNString(column_name));
}
else if(rsmd.getColumnType(i)==java.sql.Types.VARCHAR){
obj.put(column_name, rs.getString(column_name));
}
else if(rsmd.getColumnType(i)==java.sql.Types.TINYINT){
obj.put(column_name, rs.getInt(column_name));
}
else if(rsmd.getColumnType(i)==java.sql.Types.SMALLINT){
obj.put(column_name, rs.getInt(column_name));
}
else if(rsmd.getColumnType(i)==java.sql.Types.DATE){
obj.put(column_name, rs.getDate(column_name));
}
else if(rsmd.getColumnType(i)==java.sql.Types.TIMESTAMP){
obj.put(column_name, rs.getTimestamp(column_name));
}
else{
obj.put(column_name, rs.getObject(column_name));
}
}
json.put(obj);
}
return json;
}
}
答案 0 :(得分:32)
我认为有一种方法可以使用更少的内存(固定而非线性的数量,具体取决于数据基数),但这意味着要改变方法签名。事实上,我们可以在从ResultSet中获取Json数据时直接在输出流上打印Json数据:已经写入的数据将被垃圾收集,因为我们不需要将数据保存在内存中的数组。
我使用接受类型适配器的GSON。我写了一个类型适配器来将ResultSet转换为JsonArray,它看起来非常像你的代码。我正在等待“Gson 2.1:Targeted Dec 31,2011”发布,该版本将支持“支持用户定义的流式传输类型适配器”。然后我将修改我的适配器作为流适配器。
正如所承诺的那样,我回来了,但不是和Gson一起,而是和Jackson 2.很抱歉迟到(2年)。
前言:使用较少内存的结果itsef的关键是在“服务器端”光标中。使用这种游标(a.k.a.结果集到Java开发人员),当客户端继续读取时,DBMS会逐步向客户端(a.k.a.驱动程序)发送数据。我认为Oracle游标默认是服务器端。对于MySQL&gt; 5.0.2在connection url paramenter查找useCursorFetch。检查您最喜欢的DBMS。
1:因此,要使用更少的内存,我们必须:
JSONArray
),而是直接在输出行上写入每一行,其中输出行I表示输出流或写入器或者是包装输出流或编写器的json生成器。 2:正如杰克逊文档所说:
Streaming API表现最佳(开销最低,读/写速度最快; 其他两种方法建立在它上面)
3:我在你的代码中看到你使用getInt,getBoolean。没有wasNull的ResultSet的getFloat ...我希望这会产生问题。
4:我使用数组来缓存think并避免每次迭代都调用getter。虽然不是开关/案例构造的粉丝,但我将其用于int
SQL Types
。
答案:尚未完全测试,它基于Jackson 2.2:
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.2.2</version>
</dependency>
ResultSetSerializer
对象指示Jackson如何序列化(将对象转换为JSON)ResultSet。它使用内部的Jackson Streaming API。这里是测试代码:
SimpleModule module = new SimpleModule();
module.addSerializer(new ResultSetSerializer());
ObjectMapper objectMapper = new ObjectMapper();
objectMapper.registerModule(module);
[ . . . do the query . . . ]
ResultSet resultset = statement.executeQuery(query);
// Use the DataBind Api here
ObjectNode objectNode = objectMapper.createObjectNode();
// put the resultset in a containing structure
objectNode.putPOJO("results", resultset);
// generate all
objectMapper.writeValue(stringWriter, objectNode);
当然还有ResultSetSerializer类的代码:
public class ResultSetSerializer extends JsonSerializer<ResultSet> {
public static class ResultSetSerializerException extends JsonProcessingException{
private static final long serialVersionUID = -914957626413580734L;
public ResultSetSerializerException(Throwable cause){
super(cause);
}
}
@Override
public Class<ResultSet> handledType() {
return ResultSet.class;
}
@Override
public void serialize(ResultSet rs, JsonGenerator jgen, SerializerProvider provider) throws IOException, JsonProcessingException {
try {
ResultSetMetaData rsmd = rs.getMetaData();
int numColumns = rsmd.getColumnCount();
String[] columnNames = new String[numColumns];
int[] columnTypes = new int[numColumns];
for (int i = 0; i < columnNames.length; i++) {
columnNames[i] = rsmd.getColumnLabel(i + 1);
columnTypes[i] = rsmd.getColumnType(i + 1);
}
jgen.writeStartArray();
while (rs.next()) {
boolean b;
long l;
double d;
jgen.writeStartObject();
for (int i = 0; i < columnNames.length; i++) {
jgen.writeFieldName(columnNames[i]);
switch (columnTypes[i]) {
case Types.INTEGER:
l = rs.getInt(i + 1);
if (rs.wasNull()) {
jgen.writeNull();
} else {
jgen.writeNumber(l);
}
break;
case Types.BIGINT:
l = rs.getLong(i + 1);
if (rs.wasNull()) {
jgen.writeNull();
} else {
jgen.writeNumber(l);
}
break;
case Types.DECIMAL:
case Types.NUMERIC:
jgen.writeNumber(rs.getBigDecimal(i + 1));
break;
case Types.FLOAT:
case Types.REAL:
case Types.DOUBLE:
d = rs.getDouble(i + 1);
if (rs.wasNull()) {
jgen.writeNull();
} else {
jgen.writeNumber(d);
}
break;
case Types.NVARCHAR:
case Types.VARCHAR:
case Types.LONGNVARCHAR:
case Types.LONGVARCHAR:
jgen.writeString(rs.getString(i + 1));
break;
case Types.BOOLEAN:
case Types.BIT:
b = rs.getBoolean(i + 1);
if (rs.wasNull()) {
jgen.writeNull();
} else {
jgen.writeBoolean(b);
}
break;
case Types.BINARY:
case Types.VARBINARY:
case Types.LONGVARBINARY:
jgen.writeBinary(rs.getBytes(i + 1));
break;
case Types.TINYINT:
case Types.SMALLINT:
l = rs.getShort(i + 1);
if (rs.wasNull()) {
jgen.writeNull();
} else {
jgen.writeNumber(l);
}
break;
case Types.DATE:
provider.defaultSerializeDateValue(rs.getDate(i + 1), jgen);
break;
case Types.TIMESTAMP:
provider.defaultSerializeDateValue(rs.getTime(i + 1), jgen);
break;
case Types.BLOB:
Blob blob = rs.getBlob(i);
provider.defaultSerializeValue(blob.getBinaryStream(), jgen);
blob.free();
break;
case Types.CLOB:
Clob clob = rs.getClob(i);
provider.defaultSerializeValue(clob.getCharacterStream(), jgen);
clob.free();
break;
case Types.ARRAY:
throw new RuntimeException("ResultSetSerializer not yet implemented for SQL type ARRAY");
case Types.STRUCT:
throw new RuntimeException("ResultSetSerializer not yet implemented for SQL type STRUCT");
case Types.DISTINCT:
throw new RuntimeException("ResultSetSerializer not yet implemented for SQL type DISTINCT");
case Types.REF:
throw new RuntimeException("ResultSetSerializer not yet implemented for SQL type REF");
case Types.JAVA_OBJECT:
default:
provider.defaultSerializeValue(rs.getObject(i + 1), jgen);
break;
}
}
jgen.writeEndObject();
}
jgen.writeEndArray();
} catch (SQLException e) {
throw new ResultSetSerializerException(e);
}
}
}
答案 1 :(得分:27)
使这更快的两件事是:
将您的通话移至rsmd.getColumnCount()
而不是while循环。列数不应在各行之间变化。
对于每种列类型,您最终都会调用以下内容:
obj.put(column_name, rs.getInt(column_name));
使用列索引检索列值会稍微快一些:
obj.put(column_name, rs.getInt(i));
答案 2 :(得分:23)
JIT编译器可能会非常快,因为它只是分支和基本测试。你可以通过HashMap查找回调来使它更优雅,但我怀疑它会更快。至于记忆,这是非常苗条的。
不知何故,我怀疑这段代码实际上是内存或性能的关键瓶颈。你有什么理由尝试优化它吗?
答案 3 :(得分:18)
更简单的解决方案(基于相关代码):
JSONArray json = new JSONArray();
ResultSetMetaData rsmd = rs.getMetaData();
while(rs.next()) {
int numColumns = rsmd.getColumnCount();
JSONObject obj = new JSONObject();
for (int i=1; i<=numColumns; i++) {
String column_name = rsmd.getColumnName(i);
obj.put(column_name, rs.getObject(column_name));
}
json.put(obj);
}
return json;
答案 4 :(得分:10)
您可以使用jOOQ来完成这项工作。您不必使用jOOQ的所有功能来利用一些有用的JDBC扩展。在这种情况下,只需写:
String json = DSL.using(connection).fetch(resultSet).formatJSON();
使用的相关API方法是:
DSLContext.fetch(ResultSet)
将JDBC ResultSet转换为jOOQ结果。Result.formatJSON()
将jOOQ结果格式化为JSON字符串。生成的格式如下所示:
{"fields":[{"name":"field-1","type":"type-1"},
{"name":"field-2","type":"type-2"},
...,
{"name":"field-n","type":"type-n"}],
"records":[[value-1-1,value-1-2,...,value-1-n],
[value-2-1,value-2-2,...,value-2-n]]}
您还可以通过Result.map(RecordMapper)
这基本上与您的代码相同,绕过JSON对象的生成,直接“流式传输”到StringBuilder
。我会说两种情况下的性能开销应该可以忽略不计。
(免责声明:我为jOOQ背后的公司工作)
答案 5 :(得分:7)
除了@Jim Cook提出的建议。另一个想法是使用开关而不是if-elses:
while(rs.next()) {
int numColumns = rsmd.getColumnCount();
JSONObject obj = new JSONObject();
for( int i=1; i<numColumns+1; i++) {
String column_name = rsmd.getColumnName(i);
switch( rsmd.getColumnType( i ) ) {
case java.sql.Types.ARRAY:
obj.put(column_name, rs.getArray(column_name)); break;
case java.sql.Types.BIGINT:
obj.put(column_name, rs.getInt(column_name)); break;
case java.sql.Types.BOOLEAN:
obj.put(column_name, rs.getBoolean(column_name)); break;
case java.sql.Types.BLOB:
obj.put(column_name, rs.getBlob(column_name)); break;
case java.sql.Types.DOUBLE:
obj.put(column_name, rs.getDouble(column_name)); break;
case java.sql.Types.FLOAT:
obj.put(column_name, rs.getFloat(column_name)); break;
case java.sql.Types.INTEGER:
obj.put(column_name, rs.getInt(column_name)); break;
case java.sql.Types.NVARCHAR:
obj.put(column_name, rs.getNString(column_name)); break;
case java.sql.Types.VARCHAR:
obj.put(column_name, rs.getString(column_name)); break;
case java.sql.Types.TINYINT:
obj.put(column_name, rs.getInt(column_name)); break;
case java.sql.Types.SMALLINT:
obj.put(column_name, rs.getInt(column_name)); break;
case java.sql.Types.DATE:
obj.put(column_name, rs.getDate(column_name)); break;
case java.sql.Types.TIMESTAMP:
obj.put(column_name, rs.getTimestamp(column_name)); break;
default:
obj.put(column_name, rs.getObject(column_name)); break;
}
}
json.put(obj);
}
答案 6 :(得分:3)
这个答案可能不是最有效的,但肯定是动态的。将原生JDBC与Google的Gson库配对,我可以轻松地将SQL结果转换为JSON流。
我已经包含了转换器,示例数据库属性文件,SQL表生成和Gradle构建文件(使用了依赖项)。
import java.io.PrintWriter;
import com.oracle.jdbc.ResultSetConverter;
public class QueryApp {
public static void main(String[] args) {
PrintWriter writer = new PrintWriter(System.out);
String dbProps = "/database.properties";
String indent = " ";
writer.println("Basic SELECT:");
ResultSetConverter.queryToJson(writer, dbProps, "SELECT * FROM Beatles", indent, false);
writer.println("\n\nIntermediate SELECT:");
ResultSetConverter.queryToJson(writer, dbProps, "SELECT first_name, last_name, getAge(date_of_birth) as age FROM Beatles", indent, true);
}
}
package com.oracle.jdbc;
import java.io.*;
import java.lang.reflect.Type;
import java.sql.*;
import java.util.*;
import com.google.common.reflect.TypeToken;
import com.google.gson.GsonBuilder;
import com.google.gson.stream.JsonWriter;
public class ResultSetConverter {
public static final Type RESULT_TYPE = new TypeToken<List<Map<String, Object>>>() {
private static final long serialVersionUID = -3467016635635320150L;
}.getType();
public static void queryToJson(Writer writer, String connectionProperties, String query, String indent, boolean closeWriter) {
Connection conn = null;
Statement stmt = null;
GsonBuilder gson = new GsonBuilder();
JsonWriter jsonWriter = new JsonWriter(writer);
if (indent != null) jsonWriter.setIndent(indent);
try {
Properties props = readConnectionInfo(connectionProperties);
Class.forName(props.getProperty("driver"));
conn = openConnection(props);
stmt = conn.createStatement();
gson.create().toJson(QueryHelper.select(stmt, query), RESULT_TYPE, jsonWriter);
if (closeWriter) jsonWriter.close();
stmt.close();
conn.close();
} catch (SQLException se) {
se.printStackTrace();
} catch (Exception e) {
e.printStackTrace();
try {
if (stmt != null) stmt.close();
} catch (SQLException se2) {
}
try {
if (conn != null) conn.close();
} catch (SQLException se) {
se.printStackTrace();
}
try {
if (closeWriter && jsonWriter != null) jsonWriter.close();
} catch (IOException ioe) {
ioe.printStackTrace();
}
}
}
private static Properties readConnectionInfo(String resource) throws IOException {
Properties properties = new Properties();
InputStream in = ResultSetConverter.class.getResourceAsStream(resource);
properties.load(in);
in.close();
return properties;
}
private static Connection openConnection(Properties connectionProperties) throws IOException, SQLException {
String database = connectionProperties.getProperty("database");
String username = connectionProperties.getProperty("username");
String password = connectionProperties.getProperty("password");
return DriverManager.getConnection(database, username, password);
}
}
package com.oracle.jdbc;
import java.sql.*;
import java.text.*;
import java.util.*;
import com.google.common.base.CaseFormat;
public class QueryHelper {
static DateFormat DATE_FORMAT = new SimpleDateFormat("YYYY-MM-dd");
public static List<Map<String, Object>> select(Statement stmt, String query) throws SQLException {
ResultSet resultSet = stmt.executeQuery(query);
List<Map<String, Object>> records = mapRecords(resultSet);
resultSet.close();
return records;
}
public static List<Map<String, Object>> mapRecords(ResultSet resultSet) throws SQLException {
List<Map<String, Object>> records = new ArrayList<Map<String, Object>>();
ResultSetMetaData metaData = resultSet.getMetaData();
while (resultSet.next()) {
records.add(mapRecord(resultSet, metaData));
}
return records;
}
public static Map<String, Object> mapRecord(ResultSet resultSet, ResultSetMetaData metaData) throws SQLException {
Map<String, Object> record = new HashMap<String, Object>();
for (int c = 1; c <= metaData.getColumnCount(); c++) {
String columnType = metaData.getColumnTypeName(c);
String columnName = formatPropertyName(metaData.getColumnName(c));
Object value = resultSet.getObject(c);
if (columnType.equals("DATE")) {
value = DATE_FORMAT.format(value);
}
record.put(columnName, value);
}
return record;
}
private static String formatPropertyName(String property) {
return CaseFormat.LOWER_UNDERSCORE.to(CaseFormat.LOWER_CAMEL, property);
}
}
driver=com.mysql.jdbc.Driver
database=jdbc:mysql://localhost/JDBC_Tutorial
username=root
password=
-- phpMyAdmin SQL Dump
-- version 4.5.1
-- http://www.phpmyadmin.net
--
-- Host: 127.0.0.1
-- Generation Time: Jan 12, 2016 at 07:40 PM
-- Server version: 10.1.8-MariaDB
-- PHP Version: 5.6.14
SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO";
SET time_zone = "+00:00";
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8mb4 */;
--
-- Database: `jdbc_tutorial`
--
CREATE DATABASE IF NOT EXISTS `jdbc_tutorial` DEFAULT CHARACTER SET latin1 COLLATE latin1_swedish_ci;
USE `jdbc_tutorial`;
DELIMITER $$
--
-- Functions
--
DROP FUNCTION IF EXISTS `getAge`$$
CREATE DEFINER=`root`@`localhost` FUNCTION `getAge` (`in_dob` DATE) RETURNS INT(11) NO SQL
BEGIN
DECLARE l_age INT;
IF DATE_FORMAT(NOW(),'00-%m-%d') >= DATE_FORMAT(in_dob,'00-%m-%d') THEN
-- This person has had a birthday this year
SET l_age=DATE_FORMAT(NOW(),'%Y')-DATE_FORMAT(in_dob,'%Y');
ELSE
-- Yet to have a birthday this year
SET l_age=DATE_FORMAT(NOW(),'%Y')-DATE_FORMAT(in_dob,'%Y')-1;
END IF;
RETURN(l_age);
END$$
DELIMITER ;
-- --------------------------------------------------------
--
-- Table structure for table `beatles`
--
DROP TABLE IF EXISTS `beatles`;
CREATE TABLE IF NOT EXISTS `beatles` (
`id` int(11) NOT NULL,
`first_name` varchar(255) DEFAULT NULL,
`last_name` varchar(255) DEFAULT NULL,
`date_of_birth` date DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
--
-- Truncate table before insert `beatles`
--
TRUNCATE TABLE `beatles`;
--
-- Dumping data for table `beatles`
--
INSERT INTO `beatles` (`id`, `first_name`, `last_name`, `date_of_birth`) VALUES(100, 'John', 'Lennon', '1940-10-09');
INSERT INTO `beatles` (`id`, `first_name`, `last_name`, `date_of_birth`) VALUES(101, 'Paul', 'McCartney', '1942-06-18');
INSERT INTO `beatles` (`id`, `first_name`, `last_name`, `date_of_birth`) VALUES(102, 'George', 'Harrison', '1943-02-25');
INSERT INTO `beatles` (`id`, `first_name`, `last_name`, `date_of_birth`) VALUES(103, 'Ringo', 'Starr', '1940-07-07');
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;
apply plugin: 'java'
apply plugin: 'eclipse'
apply plugin: 'application'
mainClassName = 'com.oracle.jdbc.QueryApp'
repositories {
maven {
url "http://repo1.maven.org/maven2"
}
}
jar {
baseName = 'jdbc-tutorial'
version = '1.0.0'
}
sourceCompatibility = 1.7
targetCompatibility = 1.7
dependencies {
compile 'mysql:mysql-connector-java:5.1.16'
compile 'com.google.guava:guava:18.0'
compile 'com.google.code.gson:gson:1.7.2'
}
task wrapper(type: Wrapper) {
gradleVersion = '2.9'
}
[
{
"firstName": "John",
"lastName": "Lennon",
"dateOfBirth": "1940-10-09",
"id": 100
},
{
"firstName": "Paul",
"lastName": "McCartney",
"dateOfBirth": "1942-06-18",
"id": 101
},
{
"firstName": "George",
"lastName": "Harrison",
"dateOfBirth": "1943-02-25",
"id": 102
},
{
"firstName": "Ringo",
"lastName": "Starr",
"dateOfBirth": "1940-07-07",
"id": 103
}
]
[
{
"firstName": "John",
"lastName": "Lennon",
"age": 75
},
{
"firstName": "Paul",
"lastName": "McCartney",
"age": 73
},
{
"firstName": "George",
"lastName": "Harrison",
"age": 72
},
{
"firstName": "Ringo",
"lastName": "Starr",
"age": 75
}
]
答案 7 :(得分:2)
就像抬头一样,if / then循环比枚举开关效率更高。如果您对原始枚举整数进行了切换,那么它会更有效,但是对于变量,if / then更有效,至少对于Java 5,6和7来说。
即,由于某种原因(经过一些性能测试后)
if (ordinalValue == 1) {
...
} else (ordinalValue == 2 {
...
}
比
快switch( myEnum.ordinal() ) {
case 1:
...
break;
case 2:
...
break;
}
我看到有几个人在怀疑我,所以我会在这里发布代码,你可以自己运行以查看差异,以及我从Java 7获得的输出。以下代码的结果包含10个枚举值如下。注意,这里的关键是if / then使用一个整数值来比较enum的序数常量,而enns的序数值与原始int序数值相比,而每个枚举名称的枚举开关。带有整数值的if / then超过了其他两个开关,虽然最后一个开关比第一个开关快一点,但它并不比if / else快。
if / else花了23毫秒
开关耗时45毫秒
开关2耗时30 ms
总匹配数:3000000
package testing;
import java.util.Random;
enum TestEnum {
FIRST,
SECOND,
THIRD,
FOURTH,
FIFTH,
SIXTH,
SEVENTH,
EIGHTH,
NINTH,
TENTH
}
public class SwitchTest {
private static int LOOP = 1000000;
private static Random r = new Random();
private static int SIZE = TestEnum.values().length;
public static void main(String[] args) {
long time = System.currentTimeMillis();
int matches = 0;
for (int i = 0; i < LOOP; i++) {
int j = r.nextInt(SIZE);
if (j == TestEnum.FIRST.ordinal()) {
matches++;
} else if (j == TestEnum.SECOND.ordinal()) {
matches++;
} else if (j == TestEnum.THIRD.ordinal()) {
matches++;
} else if (j == TestEnum.FOURTH.ordinal()) {
matches++;
} else if (j == TestEnum.FIFTH.ordinal()) {
matches++;
} else if (j == TestEnum.SIXTH.ordinal()) {
matches++;
} else if (j == TestEnum.SEVENTH.ordinal()) {
matches++;
} else if (j == TestEnum.EIGHTH.ordinal()) {
matches++;
} else if (j == TestEnum.NINTH.ordinal()) {
matches++;
} else {
matches++;
}
}
System.out.println("If / else took "+(System.currentTimeMillis() - time)+" ms");
time = System.currentTimeMillis();
for (int i = 0; i < LOOP; i++) {
TestEnum te = TestEnum.values()[r.nextInt(SIZE)];
switch (te.ordinal()) {
case 0:
matches++;
break;
case 1:
matches++;
break;
case 2:
matches++;
break;
case 3:
matches++;
break;
case 4:
matches++;
break;
case 5:
matches++;
break;
case 6:
matches++;
break;
case 7:
matches++;
break;
case 8:
matches++;
break;
case 9:
matches++;
break;
default:
matches++;
break;
}
}
System.out.println("Switch took "+(System.currentTimeMillis() - time)+" ms");
time = System.currentTimeMillis();
for (int i = 0; i < LOOP; i++) {
TestEnum te = TestEnum.values()[r.nextInt(SIZE)];
switch (te) {
case FIRST:
matches++;
break;
case SECOND:
matches++;
break;
case THIRD:
matches++;
break;
case FOURTH:
matches++;
break;
case FIFTH:
matches++;
break;
case SIXTH:
matches++;
break;
case SEVENTH:
matches++;
break;
case EIGHTH:
matches++;
break;
case NINTH:
matches++;
break;
default:
matches++;
break;
}
}
System.out.println("Switch 2 took "+(System.currentTimeMillis() - time)+" ms");
System.out.println("Total matches: "+matches);
}
}
答案 8 :(得分:2)
首先预生成列名,第二次使用rs.getString(i)
而不是rs.getString(column_name)
。
以下是对此的实现:
/*
* Convert ResultSet to a common JSON Object array
* Result is like: [{"ID":"1","NAME":"Tom","AGE":"24"}, {"ID":"2","NAME":"Bob","AGE":"26"}, ...]
*/
public static List<JSONObject> getFormattedResult(ResultSet rs) {
List<JSONObject> resList = new ArrayList<JSONObject>();
try {
// get column names
ResultSetMetaData rsMeta = rs.getMetaData();
int columnCnt = rsMeta.getColumnCount();
List<String> columnNames = new ArrayList<String>();
for(int i=1;i<=columnCnt;i++) {
columnNames.add(rsMeta.getColumnName(i).toUpperCase());
}
while(rs.next()) { // convert each object to an human readable JSON object
JSONObject obj = new JSONObject();
for(int i=1;i<=columnCnt;i++) {
String key = columnNames.get(i - 1);
String value = rs.getString(i);
obj.put(key, value);
}
resList.add(obj);
}
} catch(Exception e) {
e.printStackTrace();
} finally {
try {
rs.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
return resList;
}
答案 9 :(得分:1)
如果有人计划使用此实现,您可能需要check this out and this
这是我的转换代码版本:
public class ResultSetConverter {
public static JSONArray convert(ResultSet rs) throws SQLException,
JSONException {
JSONArray json = new JSONArray();
ResultSetMetaData rsmd = rs.getMetaData();
int numColumns = rsmd.getColumnCount();
while (rs.next()) {
JSONObject obj = new JSONObject();
for (int i = 1; i < numColumns + 1; i++) {
String column_name = rsmd.getColumnName(i);
if (rsmd.getColumnType(i) == java.sql.Types.ARRAY) {
obj.put(column_name, rs.getArray(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.BIGINT) {
obj.put(column_name, rs.getLong(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.REAL) {
obj.put(column_name, rs.getFloat(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.BOOLEAN) {
obj.put(column_name, rs.getBoolean(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.BLOB) {
obj.put(column_name, rs.getBlob(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.DOUBLE) {
obj.put(column_name, rs.getDouble(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.FLOAT) {
obj.put(column_name, rs.getDouble(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.INTEGER) {
obj.put(column_name, rs.getInt(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.NVARCHAR) {
obj.put(column_name, rs.getNString(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.VARCHAR) {
obj.put(column_name, rs.getString(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.CHAR) {
obj.put(column_name, rs.getString(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.NCHAR) {
obj.put(column_name, rs.getNString(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.LONGNVARCHAR) {
obj.put(column_name, rs.getNString(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.LONGVARCHAR) {
obj.put(column_name, rs.getString(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.TINYINT) {
obj.put(column_name, rs.getByte(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.SMALLINT) {
obj.put(column_name, rs.getShort(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.DATE) {
obj.put(column_name, rs.getDate(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.TIME) {
obj.put(column_name, rs.getTime(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.TIMESTAMP) {
obj.put(column_name, rs.getTimestamp(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.BINARY) {
obj.put(column_name, rs.getBytes(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.VARBINARY) {
obj.put(column_name, rs.getBytes(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.LONGVARBINARY) {
obj.put(column_name, rs.getBinaryStream(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.BIT) {
obj.put(column_name, rs.getBoolean(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.CLOB) {
obj.put(column_name, rs.getClob(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.NUMERIC) {
obj.put(column_name, rs.getBigDecimal(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.DECIMAL) {
obj.put(column_name, rs.getBigDecimal(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.DATALINK) {
obj.put(column_name, rs.getURL(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.REF) {
obj.put(column_name, rs.getRef(column_name));
} else if (rsmd.getColumnType(i) == java.sql.Types.STRUCT) {
obj.put(column_name, rs.getObject(column_name)); // must be a custom mapping consists of a class that implements the interface SQLData and an entry in a java.util.Map object.
} else if (rsmd.getColumnType(i) == java.sql.Types.DISTINCT) {
obj.put(column_name, rs.getObject(column_name)); // must be a custom mapping consists of a class that implements the interface SQLData and an entry in a java.util.Map object.
} else if (rsmd.getColumnType(i) == java.sql.Types.JAVA_OBJECT) {
obj.put(column_name, rs.getObject(column_name));
} else {
obj.put(column_name, rs.getString(i));
}
}
json.put(obj);
}
return json;
}
}
答案 10 :(得分:0)
package com.idal.cib;
import java.io.FileWriter;
import java.io.IOException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.util.ArrayList;
import org.json.simple.JSONArray;
import org.json.simple.JSONObject;
public class DBJsonConverter {
static ArrayList<String> data = new ArrayList<String>();
static Connection conn = null;
static PreparedStatement ps = null;
static ResultSet rs = null;
static String path = "";
static String driver="";
static String url="";
static String username="";
static String password="";
static String query="";
@SuppressWarnings({ "unchecked" })
public static void dataLoad(String path) {
JSONObject obj1 = new JSONObject();
JSONArray jsonArray = new JSONArray();
conn = DatabaseConnector.getDbConnection(driver, url, username,
password);
try {
ps = conn.prepareStatement(query);
rs = ps.executeQuery();
ArrayList<String> columnNames = new ArrayList<String>();
if (rs != null) {
ResultSetMetaData columns = rs.getMetaData();
int i = 0;
while (i < columns.getColumnCount()) {
i++;
columnNames.add(columns.getColumnName(i));
}
while (rs.next()) {
JSONObject obj = new JSONObject();
for (i = 0; i < columnNames.size(); i++) {
data.add(rs.getString(columnNames.get(i)));
{
for (int j = 0; j < data.size(); j++) {
if (data.get(j) != null) {
obj.put(columnNames.get(i), data.get(j));
}else {
obj.put(columnNames.get(i), "");
}
}
}
}
jsonArray.add(obj);
obj1.put("header", jsonArray);
FileWriter file = new FileWriter(path);
file.write(obj1.toJSONString());
file.flush();
file.close();
}
ps.close();
} else {
JSONObject obj2 = new JSONObject();
obj2.put(null, null);
jsonArray.add(obj2);
obj1.put("header", jsonArray);
}
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} finally {
if (conn != null) {
try {
conn.close();
rs.close();
ps.close();
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
}
@SuppressWarnings("static-access")
public static void main(String[] args) {
// TODO Auto-generated method stub
driver = "oracle.jdbc.driver.OracleDriver";
url = "jdbc:oracle:thin:@localhost:1521:database";
username = "user";
password = "password";
path = "path of file";
query = "select * from temp_employee";
DatabaseConnector dc = new DatabaseConnector();
dc.getDbConnection(driver,url,username,password);
DBJsonConverter formatter = new DBJsonConverter();
formatter.dataLoad(path);
}
}
package com.idal.cib;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
public class DatabaseConnector {
static Connection conn1 = null;
public static Connection getDbConnection(String driver, String url,
String username, String password) {
// TODO Auto-generated constructor stub
try {
Class.forName(driver);
conn1 = DriverManager.getConnection(url, username, password);
} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return conn1;
}
}
答案 11 :(得分:0)
public static JSONArray GetJSONDataFromResultSet(ResultSet rs) throws SQLException {
ResultSetMetaData metaData = rs.getMetaData();
int count = metaData.getColumnCount();
String[] columnName = new String[count];
JSONArray jsonArray = new JSONArray();
while(rs.next()) {
JSONObject jsonObject = new JSONObject();
for (int i = 1; i <= count; i++){
columnName[i-1] = metaData.getColumnLabel(i);
jsonObject.put(columnName[i-1], rs.getObject(i));
}
jsonArray.put(jsonObject);
}
return jsonArray;
}
答案 12 :(得分:0)
对于所有选择if-else网格解决方案的人,请使用:
String columnName = metadata.getColumnName(
String displayName = metadata.getColumnLabel(i);
switch (metadata.getColumnType(i)) {
case Types.ARRAY:
obj.put(displayName, resultSet.getArray(columnName));
break;
...
因为在查询中使用别名,所以列名和列标签是两件事。例如,如果您执行:
select col1, col2 as my_alias from table
您会得到
[
{ "col1": 1, "col2": 2 },
{ "col1": 1, "col2": 2 }
]
而不是:
[
{ "col1": 1, "my_alias": 2 },
{ "col1": 1, "my_alias": 2 }
]
答案 13 :(得分:-1)
另一种方式,这里我使用了ArrayList和Map,所以它不是逐行调用json对象,而是在结果集迭代完成之后:
List<Map<String, String>> list = new ArrayList<Map<String, String>>();
ResultSetMetaData rsMetaData = rs.getMetaData();
while(rs.next()){
Map map = new HashMap();
for (int i = 1; i <= rsMetaData.getColumnCount(); i++) {
String key = rsMetaData.getColumnName(i);
String value = null;
if (rsmd.getColumnType(i) == java.sql.Types.VARCHAR) {
value = rs.getString(key);
} else if(rsmd.getColumnType(i)==java.sql.Types.BIGINT)
value = rs.getLong(key);
}
map.put(key, value);
}
list.add(map);
}
json.put(list);