有条件的熊猫滚动总和

时间:2020-11-12 21:35:36

标签: python pandas

当列Trade_CostBuy(C)/Sell(V)时,如何计算列C的滚动总和,并在每次Current_Qntd命中0时重置该总和,然后开始新的滚动总和,直到下一个零?

     Buy(C)/Sell(V)   Qntd     Price  Current_Qntd    Trade_Cost
0               C  33000  103.980000         33000  3.431340e+06
1               C   3682  102.940000         36682  3.790251e+05
2               C    108  103.490000         36790  1.117692e+04
3               C  10717  103.500000         47507  1.109210e+06
4               C   6831  103.760000         54338  7.087846e+05
5               C    968  107.000000         55306  1.035760e+05
6               C     32  107.000000         55338  3.424000e+03
7               V   3644  115.618296         51694  4.213131e+05
8               V   4704  115.995689         46990  5.456437e+05
9               V  46990  116.030000             0  5.452250e+06
10              C  35000  116.000000         35000  4.060000e+06
11              C  16000  117.999073         51000  1.887985e+06
12              V   1200  115.274742         49800  1.383297e+05
13              V   1400  116.700036         48400  1.633800e+05
14              V  23855  116.406567         24545  2.776879e+06
15              V   2589  116.247625         21956  3.009651e+05
16              V  12741  115.952801          9215  1.477355e+06
17              V   9132  115.951078            83  1.058865e+06
18              V     83  115.950000             0  9.623850e+03

编辑

我需要按资产分组,以下是上述DF的延续,每个DF代表不同的资产

Buy(C)/Sell(V)  Qntd       Price  Current_Qntd     Trade_Cost
0              C   100  114.290000           100   11429.000000
1              C  3137  115.020000          3237  360817.740000
2              V   100  114.500000          3137   11450.000000
3              V  1200  114.670000          1937  137604.000000
4              V  1937  115.000000             0  222755.000000
5              C  5586   96.790000          5586  540668.940000
6              V  5586  116.590000             0  651271.740000
7              C   971  118.630000           971  115189.730000
8              V   971  129.800000             0  126035.800000
9              C   600  126.416417           600   75849.850002

1 个答案:

答案 0 :(得分:0)

IIUC,请尝试以下操作:

grp = (df['Current_Qntd'] == 0).cumsum()

df['Trade_Cost Sum'] = df['Trade_Cost'].mask(df['Buy(C)/Sell(V)'] != 'C', 0)

df['Trade_Cost Sum'] = df.groupby(grp)['Trade_Cost Sum'].cumsum()

df

输出:

   Buy(C)/Sell(V)   Qntd       Price  Current_Qntd  Trade_Cost  Trade_Cost Sum
0               C  33000  103.980000         33000  3431340.00      3431340.00
1               C   3682  102.940000         36682   379025.10      3810365.10
2               C    108  103.490000         36790    11176.92      3821542.02
3               C  10717  103.500000         47507  1109210.00      4930752.02
4               C   6831  103.760000         54338   708784.60      5639536.62
5               C    968  107.000000         55306   103576.00      5743112.62
6               C     32  107.000000         55338     3424.00      5746536.62
7               V   3644  115.618296         51694   421313.10      5746536.62
8               V   4704  115.995689         46990   545643.70      5746536.62
9               V  46990  116.030000             0  5452250.00            0.00
10              C  35000  116.000000         35000  4060000.00      4060000.00
11              C  16000  117.999073         51000  1887985.00      5947985.00
12              V   1200  115.274742         49800   138329.70      5947985.00
13              V   1400  116.700036         48400   163380.00      5947985.00
14              V  23855  116.406567         24545  2776879.00      5947985.00
15              V   2589  116.247625         21956   300965.10      5947985.00
16              V  12741  115.952801          9215  1477355.00      5947985.00
17              V   9132  115.951078            83  1058865.00      5947985.00
18              V     83  115.950000             0     9623.85            0.00