我想修改我的绘图代码,以显示最小/最大柱,如下图所示:
我的代码是:
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("white")
sns.set_style('darkgrid',{"axes.facecolor": ".92"}) # (1)
sns.set_context('notebook')
Delay = ['S1', 'S2', 'S3', 'S4']
Time = [87, 66, 90, 55]
df = pd.DataFrame({'Delay':Delay,'Time':Time})
print("Accuracy")
display(df) # in jupyter
fig, ax = plt.subplots(figsize = (8,6))
x = Delay
y = Time
plt.xlabel("Delay", size=14)
plt.ylim(-0.3, 100)
width = 0.1
for i, j in zip(x,y):
ax.bar(i,j, edgecolor = "black",
error_kw=dict(lw=1, capsize=1, capthick=1))
ax.set(ylabel = 'Accuracy')
from matplotlib import ticker
ax.yaxis.set_major_locator(ticker.MultipleLocator(10))
plt.savefig("Try.png", dpi=300, bbox_inches='tight')
代码产生如下图:
我要添加的最小/最大用于:
87 (60-90)
66 (40-70)
90 (80-93)
55 (23-60)
预先感谢您的帮助。
答案 0 :(得分:2)
seaborn.barplot
和ax.bar
的示例扩展了先前question的代码。matplotlib.pyplot.errorbar
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# set edgecolor param (this is a global setting, so only set it once)
plt.rcParams["patch.force_edgecolor"] = True
# setup the dataframe
Delay = ['S1', 'S2', 'S3', 'S4']
Time = [87, 66, 90, 55]
df = pd.DataFrame({'Delay':Delay,'Time':Time})
# create a dict for the errors
error = {87: {'max': 90,'min': 60}, 66: {'max': 70,'min': 40}, 90: {'max': 93,'min': 80}, 55: {'max': 60,'min': 23}}
seaborn.barplot
seaborn.barplot
将自动添加错误栏,如链接中的示例所示。但是,这特定于使用许多数据点。在这种情况下,将值指定为错误,而不是根据数据确定错误。
capsize
参数,以在误差线的顶部和底部添加水平线。# plot the figure
fig, ax = plt.subplots(figsize=(8, 6))
sns.barplot(x='Delay', y='Time', data=df, ax=ax)
# add the lines for the errors
for p in ax.patches:
x = p.get_x() # get the bottom left x corner of the bar
w = p.get_width() # get width of bar
h = p.get_height() # get height of bar
min_y = error[h]['min'] # use h to get min from dict z
max_y = error[h]['max'] # use h to get max from dict z
plt.vlines(x+w/2, min_y, max_y, color='k') # draw a vertical line
yerr
参数可用于向API显式提供错误。
yerr
期望值与条形图的顶部相关
S1
是87,其中min
或60,而max
是90。因此,ymin
是27,(87-60)和ymax
是3,(90-87)。seaborn.barplot
capsize
参数似乎不适用于yerr
,因此必须设置matplotlib
'errorbar.capsize'
rcParmas
。参见Matplotlib Errorbar Caps Missing # set capsize param (this is a global setting, so only set it once)
plt.rcParams['errorbar.capsize'] = 10
# create dataframe as shown by gepcel
Delay = ['S1', 'S2', 'S3', 'S4']
Time = [87, 66, 90, 55]
_min = [60, 40, 80, 23]
_max = [90, 70, 93, 60]
df = pd.DataFrame({'Delay':Delay,'Time':Time, 'Min': _min, 'Max': _max})
# create ymin and ymax
df['ymin'] = df.Time - df.Min
df['ymax'] = df.Max - df.Time
# extract ymin and ymax into a (2, N) array as required by the yerr parameter
yerr = df[['ymin', 'ymax']].T.to_numpy()
# plot with error bars
fig, ax = plt.subplots(figsize=(8, 6))
sns.barplot(x='Delay', y='Time', data=df, yerr=yerr, ax=ax)
pandas.DataFrame.plot.bar
fig, ax = plt.subplots(figsize=(8, 6))
df.plot.bar(x='Delay', ax=ax)
for p in ax.patches:
x = p.get_x() # get the bottom left x corner of the bar
w = p.get_width() # get width of bar
h = p.get_height() # get height of bar
min_y = error[h]['min'] # use h to get min from dict z
max_y = error[h]['max'] # use h to get max from dict z
plt.vlines(x+w/2, min_y, max_y, color='k') # draw a vertical line
ax.bar
fig, ax = plt.subplots(figsize=(8, 6))
ax.bar(x='Delay', height='Time', data=df)
for p in ax.patches:
x = p.get_x() # get the bottom left x corner of the bar
w = p.get_width() # get width of bar
h = p.get_height() # get height of bar
min_y = error[h]['min'] # use h to get min from dict z
max_y = error[h]['max'] # use h to get max from dict z
plt.vlines(x+w/2, min_y, max_y, color='k') # draw a vertical line
答案 1 :(得分:1)
您可以直接使用yerr
中的plt.bar
arg。以@Trenton McKinney的代码为例:
import pandas as pd
import matplotlib.pyplot as plt
# setup the dataframe
Delay = ['S1', 'S2', 'S3', 'S4']
Time = [87, 66, 90, 55]
_min = [60, 40, 80, 23]
_max = [90, 70, 93, 60]
df = pd.DataFrame({'Delay':Delay,'Time':Time, 'Min': _min, 'Max': _max})
df = (df.assign(yerr_min = df.Time-df.Min)
.assign(yerr_max=df.Max-df.Time))
plt.figure(figsize=(8, 6))
plt.bar(x='Delay', height='Time', yerr=df[['yerr_min', 'yerr_max']].T.values, capsize=10, data=df)
plt.show()
答案 2 :(得分:0)
这是使用 yerr
和 numpy
的解决方案。它的样板代码比@gepcel 的少。
import matplotlib.pyplot as plt
import numpy as np
# setup the dataframe
Delay = ['S1', 'S2', 'S3', 'S4']
Time = [87, 66, 90, 55]
_min = [60, 40, 80, 23]
_max = [90, 70, 93, 60]
plt.figure(figsize=(8, 6))
yerr = [np.subtract(Time, _min), np.subtract(_max, Time)]
plt.bar(Delay, Time, yerr=yerr, capsize=10)
plt.show()