pytorch:如何通过for循环计算损失

时间:2020-11-08 07:29:38

标签: pytorch loss

我想计算自己的损失。我想通过深度学习来预测N点。因此,网络的输出为N点(N * 3)。 numpy计算应为:

import numpy as np

point1 = np.random.random(size=[10, 30, 3])
point2 = np.random.random(size=[10, 30, 3])

losses = []
for s in range(10):
    loss = 0
    for p in range(30):
        p1 = point1[s, p, :]
        dis = p1 - point2[s, :, :]
        dis = np.linalg.norm(dis, axis=1)
        loss += dis.min()
    losses.append(loss)
print(loss)

在pytorch中,重点应该是:

point1 = np.random.random(size=[10, 30, 3])
point2 = np.random.random(size=[10, 30, 3])

point1 = torch.from_numpy(point1)
point2 = torch.from_numpy(point2)

如何计算火炬的损失?

任何建议都值得赞赏!

0 个答案:

没有答案