我正在运行一个流程,该流程利用以下sudo代码从kafka中读取内容,然后发布到弹性搜索中。
try {
val outStreamES = spark.readStream
.format("kafka")
.option("subscribe", topics.keys.mkString(","))
.options(kafkaConfig)
.load()
.select($"key".cast(StringType), $"value".cast(StringType), $"topic")
// Convert untyped dataframe to dataset
.as[(String, String, String)]
// Merge all manifests for vehicle in minibatch
.groupByKey(_._1)
//Start of merge
.flatMapGroupsWithState(OutputMode.Append, GroupStateTimeout.ProcessingTimeTimeout)(mergeGroup)
// .select($"key".cast(StringType),from_json($"value",schema).as("manifest"))
.select($"_1".alias("key"), $"_2".alias("manifest"))
val inStreamManifestMain = outStreamES
inStreamManifestMain
.select("key", "manifest.*")
// Convert timestamp columns to strings - avoids conversion to longs otherwise
.writeStream
.outputMode("append")
.format("org.elasticsearch.spark.sql")
.trigger(Trigger.ProcessingTime(conf.getString("spark.trigger")))
.option("mode", "DROPMALFORMED")
.options(configToMap(conf.getObject("esConf")))
.start()
在mergeGroup内,我可以尝试/捕获与架构不匹配的任何不良记录。有没有办法拒绝与架构不匹配的不良记录,而不是杀死整个火花流?
我正在使用的try / catch的sudo代码,一条记录导致流连续失败,唯一清除记录的是清除整个主题
val manifests = rows.map(r => (
try {
read[ProductManifestDocument](r._2)
} catch {
case ex: MappingException => throw MappingException(ex.msg + "\n" + r._2 + "vRECORD FAILED TO MAPv ", ex)
},
//all topics
topics(r._3)
))
.toList