张量流数据集的顺序模型

时间:2020-11-04 09:52:11

标签: python tensorflow keras sequential tf.data.dataset

我试图了解如何将const spaceCode = 32; var lastCharCode = undefined; function isAlfa(evt) { evt = (evt) ? evt : window.event; var charCode = (evt.which) ? evt.which : evt.keyCode; if (lastCharCode == spaceCode && charCode == spaceCode) { throw new Error('No double space allowed'); } lastCharCode = charCode; if (charCode > 32 && (charCode < 65 || charCode > 90) && (charCode < 97 || charCode > 122)) { return false; } return true; } s tensorflow s用于简单的回归模型,而不是将其单独输入Dataset来训练输入和输出。

这是一个简单的独立示例:

np.array

运行该示例import tensorflow as tf import numpy as np # create training data X_train_set = np.random.random(size=(1000,10)) y_train_set = np.random.random(size=(1000)) # convert to dataset train_dataset = tf.data.Dataset.from_tensor_slices((X_train_set, y_train_set)) my_model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(10,)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10, activation='relu'), tf.keras.layers.Dense(1) ]) my_model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.1), loss='mean_absolute_error') # train with np.array data my_model.fit(X_train_set,y_train_set,epochs=2) print('Success Training 1\n') # train with datasets my_model.fit(train_dataset,epochs=2) print('Success Training 2\n') 即可。但是,my_model.fit(X_train_set,y_train_set,epochs=2)会引发错误:

my_model.fit(train_dataset,epochs=2)

问题是:我必须创建其他Epoch 1/2 32/32 [==============================] - 0s 2ms/step - loss: 0.3424 Epoch 2/2 32/32 [==============================] - 0s 2ms/step - loss: 0.2501 Success Training 1 Epoch 1/2 --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-82-31d0c7e586d8> in <module> 21 22 # train with datasets ---> 23 my_model.fit(train_dataset,epochs=2) 24 print('Success Training 2\n') ~/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs) 106 def _method_wrapper(self, *args, **kwargs): 107 if not self._in_multi_worker_mode(): # pylint: disable=protected-access --> 108 return method(self, *args, **kwargs) 109 110 # Running inside `run_distribute_coordinator` already. ~/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing) 1096 batch_size=batch_size): 1097 callbacks.on_train_batch_begin(step) -> 1098 tmp_logs = train_function(iterator) 1099 if data_handler.should_sync: 1100 context.async_wait() ~/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds) 778 else: 779 compiler = "nonXla" --> 780 result = self._call(*args, **kwds) 781 782 new_tracing_count = self._get_tracing_count() ~/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds) 805 # In this case we have created variables on the first call, so we run the 806 # defunned version which is guaranteed to never create variables. --> 807 return self._stateless_fn(*args, **kwds) # pylint: disable=not-callable 808 elif self._stateful_fn is not None: 809 # Release the lock early so that multiple threads can perform the call ~/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs) 2826 """Calls a graph function specialized to the inputs.""" 2827 with self._lock: -> 2828 graph_function, args, kwargs = self._maybe_define_function(args, kwargs) 2829 return graph_function._filtered_call(args, kwargs) # pylint: disable=protected-access 2830 ~/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs) 3208 and self.input_signature is None 3209 and call_context_key in self._function_cache.missed): -> 3210 return self._define_function_with_shape_relaxation(args, kwargs) 3211 3212 self._function_cache.missed.add(call_context_key) ~/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/eager/function.py in _define_function_with_shape_relaxation(self, args, kwargs) 3140 3141 graph_function = self._create_graph_function( -> 3142 args, kwargs, override_flat_arg_shapes=relaxed_arg_shapes) 3143 self._function_cache.arg_relaxed[rank_only_cache_key] = graph_function 3144 ~/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes) 3073 arg_names=arg_names, 3074 override_flat_arg_shapes=override_flat_arg_shapes, -> 3075 capture_by_value=self._capture_by_value), 3076 self._function_attributes, 3077 function_spec=self.function_spec, ~/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes) 984 _, original_func = tf_decorator.unwrap(python_func) 985 --> 986 func_outputs = python_func(*func_args, **func_kwargs) 987 988 # invariant: `func_outputs` contains only Tensors, CompositeTensors, ~/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds) 598 # __wrapped__ allows AutoGraph to swap in a converted function. We give 599 # the function a weak reference to itself to avoid a reference cycle. --> 600 return weak_wrapped_fn().__wrapped__(*args, **kwds) 601 weak_wrapped_fn = weakref.ref(wrapped_fn) 602 ~/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs) 971 except Exception as e: # pylint:disable=broad-except 972 if hasattr(e, "ag_error_metadata"): --> 973 raise e.ag_error_metadata.to_exception(e) 974 else: 975 raise ValueError: in user code: /home/max/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py:806 train_function * return step_function(self, iterator) /home/max/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py:796 step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) /home/max/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/distribute/distribute_lib.py:1211 run return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs) /home/max/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica return self._call_for_each_replica(fn, args, kwargs) /home/max/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica return fn(*args, **kwargs) /home/max/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py:789 run_step ** outputs = model.train_step(data) /home/max/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py:747 train_step y_pred = self(x, training=True) /home/max/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py:976 __call__ self.name) /home/max/virtualEnv/py3_TF23/lib/python3.6/site-packages/tensorflow/python/keras/engine/input_spec.py:216 assert_input_compatibility ' but received input with shape ' + str(shape)) ValueError: Input 0 of layer sequential_26 is incompatible with the layer: expected axis -1 of input shape to have value 10 but received input with shape [10, 1] 模型还是我的Sequential完全不正确?我认为在训练步骤中train_dataset应该可以和np.array互换吗?

1 个答案:

答案 0 :(得分:1)

在使用生成器时,Keras模型期望输入以批处理尺寸作为其第一维。

只需调用数据集上的batch(batch_size)即可:

batch_size = 1
train_dataset = tf.data.Dataset.from_tensor_slices((X_train_set, y_train_set))
train_dataset = train_dataset.batch(batch_size)