我正在尝试重新加载经过微调的DistilBertForTokenClassification模型。我正在使用变压器3.4.0和pytorch版本1.6.0 + cu101。在使用Trainer训练下载的模型之后,我使用trainer.save_model()保存该模型,并且在排除故障时,我通过model.save_pretrained()保存在另一个目录中。我正在使用Google Colab,并将模型保存到我的Google驱动器中。测试完模型后,我还在测试中评估了该模型,并获得了不错的结果,但是,当我回到笔记本计算机(或在Factory中重新启动colab笔记本计算机)并尝试重新加载模型时,预测很糟糕。检查目录后,config.json文件和pytorch_mode.bin也在那里。下面是完整的代码。
from transformers import DistilBertForTokenClassification
# load the pretrained model from huggingface
#model = DistilBertForTokenClassification.from_pretrained('distilbert-base-cased', num_labels=len(uniq_labels))
model = DistilBertForTokenClassification.from_pretrained('distilbert-base-uncased', num_labels=len(uniq_labels))
model.to('cuda');
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir = model_dir + 'mitmovie_pt_distilbert_uncased/results', # output directory
#overwrite_output_dir = True,
evaluation_strategy='epoch',
num_train_epochs=3, # total number of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=64, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir = model_dir + 'mitmovie_pt_distilbert_uncased/logs', # directory for storing logs
logging_steps=10,
load_best_model_at_end = True
)
trainer = Trainer(
model = model, # the instantiated ? Transformers model to be trained
args = training_args, # training arguments, defined above
train_dataset = train_dataset, # training dataset
eval_dataset = test_dataset # evaluation dataset
)
trainer.train()
trainer.evaluate()
model_dir = '/content/drive/My Drive/Colab Notebooks/models/'
trainer.save_model(model_dir + 'mitmovie_pt_distilbert_uncased/model')
# alternative saving method and folder
model.save_pretrained(model_dir + 'distilbert_testing')
重新启动后返回笔记本电脑...
from transformers import DistilBertForTokenClassification, DistilBertConfig, AutoModelForTokenClassification
# retreive the saved model
model = DistilBertForTokenClassification.from_pretrained(model_dir + 'mitmovie_pt_distilbert_uncased/model',
local_files_only=True)
model.to('cuda')
现在无论从哪个目录进行模型预测都是可怕的,但是,该模型可以正常工作并输出我期望的班级数量,看来实际的训练砝码尚未保存或未加载。