我在Pandas中有一个带有某些列的数据框,如下所示:
data = {
'CODIGO_SINIESTRO': [10476434, 10476434, 4482524, 4482524, 4486110],
'CONDICION': ['PASAJERO', 'CONDUCTOR', 'MOTOCICLISTA', 'CICLISTA', 'PEATON'],
'EDAD': [62.0, 29.0, 26.0, 47.0, 33.0],
'SEXO': ['MASCULINO', 'FEMENINO', 'FEMENINO', 'MASCULINO', 'FEMENINO']
}
df = pd.DataFrame(data)
输出:
CODIGO_SINIESTRO CONDICION EDAD SEXO
0 10476434 PASAJERO 62.0 MASCULINO
1 10476434 CONDUCTOR 29.0 MASCULINO
2 4482524 MOTOCICLISTA 26.0 MASCULINO
3 4482524 CICLISTA 47.0 MASCULINO
4 4486110 PEATON 33.0 FEMENINO
因此,我想创建另一个按'CODIGO_SINIESTRO'
列分组的数据框,并且希望以下列如result:
'CODIGO_SINIESTRO'
:该行的ID。'PROMEDIO_EDAD'
:此列将存储edad平均值。'CANTIDAD_HOMBRES'
:此列将基于'SEXO'
列存储男性计数。'CANTIDAD_HOMBRES'
:此列将存储基于'SEXO'
列的女性含量。最后,我想要五个额外的列,它们的名称等于'CONDICION'
列的四个值,如果值存在,则该值将存储1,否则将存储0。
因此,我编写了此解决方案并按预期工作,但是我的数据集中有很多行(150k +),解决方案很慢(5分钟)。这是我的代码:
df_final = df.groupby(['CODIGO_SINIESTRO']).agg(
CANTIDAD_HOMBRES=pd.NamedAgg(column='SEXO', aggfunc=lambda x: (x=='MASCULINO').sum()),
CANTIDAD_MUJERES=pd.NamedAgg(column='SEXO', aggfunc=lambda x: (x=='FEMENINO').sum()),
PROMEDIO_EDAD=pd.NamedAgg(column='EDAD', aggfunc=np.mean),
MOTOCICLISTA=pd.NamedAgg(column='CONDICION', aggfunc=lambda x: (x=='MOTOCICLISTA').any().astype(int)),
CONDUCTOR=pd.NamedAgg(column='CONDICION', aggfunc=lambda x: (x=='CONDUCTOR').any().astype(int)),
PEATON=pd.NamedAgg(column='CONDICION', aggfunc=lambda x: (x=='PEATON').any().astype(int)),
CICLISTA=pd.NamedAgg(column='CONDICION', aggfunc=lambda x: (x=='CICLISTA').any().astype(int)),
PASAJERO=pd.NamedAgg(column='CONDICION', aggfunc=lambda x: (x=='PASAJERO').any().astype(int))
).reset_index()
输出:
CODIGO_SINIESTRO CANTIDAD_HOMBRES CANTIDAD_MUJERES PROMEDIO_EDAD ...
0 4482524 1 1 36.5
1 4486110 0 1 33.0
2 10476434 1 1 45.5
... MOTOCICLISTA CONDUCTOR PEATON CICLISTA PASAJERO
1 0 0 1 0
0 0 1 0 0
0 1 0 0 1
如何优化此解决方案?,还有其他解决方法吗?
谢谢。
答案 0 :(得分:2)
使用矢量化方法进行预聚合应该更加高效(事实证明,速度要快100倍):
df['PROMEDIO_EDAD']= df.groupby('CODIGO_SINIESTRO')['EDAD'].transform(np.mean)
df['CANTIDAD_HOMBRES'] = np.where(df['SEXO'] == 'MASCULINO', 1, 0)
df['CANTIDAD_MUJERES'] = np.where(df['SEXO'] == 'FEMENINO', 1, 0)
for col in df['CONDICION'].unique():
df[col] = np.where(df['CONDICION'] == col, 1, 0)
df = df.groupby(['CODIGO_SINIESTRO', 'PROMEDIO_EDAD']).sum().reset_index().drop('EDAD', axis=1)
df.iloc[:,2:] = (df.iloc[:,2:] > 0).astype(int)
df
Out[1]:
CODIGO_SINIESTRO PROMEDIO_EDAD CANTIDAD_HOMBRES CANTIDAD_MUJERES \
0 4482524 36.5 1 1
1 4486110 33.0 0 1
2 10476434 45.5 1 1
PASAJERO CONDUCTOR MOTOCICLISTA CICLISTA PEATON
0 0 0 1 1 0
1 0 0 0 0 1
2 1 1 0 0 0