雪花熊猫连接问题

时间:2020-11-02 19:50:27

标签: snowflake-cloud-data-platform

我正在尝试使用pandas连接器将数据帧插入到雪花表中并遇到权限问题,但是使用“正常”雪花连接器可以正常工作。

;with SGPA
as (select stud.StudentID,
           stud.StudentName,
           studsc.Semester,
           SUM(course.Credit) as 'CreditSemester',
           SUM(course.Credit * wght.[Weight]) / SUM(course.Credit) as 'SemesterGPA'
    from Student as stud
        inner join StudentScore as studsc
            on stud.StudentID = studsc.StudentID
        inner join Course as course
            on studsc.CourseID = course.CourseID
        inner join [Weight] as wght
            on studsc.Grade = wght.Grade
    group by stud.StudentID,
             stud.StudentName,
             studsc.Semester
   )



select *, 
(select SUM(CreditSemester) from SGPA i) as 'CreditCumulative', 
(select AVG(SemesterGPA) from SGPA i) as 'CumulativeGPA'

from SGPA o

但是我得到了

import snowflake.connector as snow
from snowflake.connector.pandas_tools import *

cur = self.conn.cursor()
my_schema = "my_schema"
my_table = "my_table"
cur.execute(f"""INSERT INTO {my_schema}.{my_table}(load_date, some_id)
 values (current_timestamp, 'xxx')""")
write_pandas(self.conn, daily_epc_df, table_name=my_table, schema=my_schema)

相同的连接可以插入,但不能在同一张表上使用。

我也尝试过

  File "/Users/abohr/virtualenv/peak38/lib/python3.8/site-packages/snowflake/connector/errors.py", line 85, in default_errorhandler
    raise error_class(
snowflake.connector.errors.ProgrammingError: 001757 (42601): SQL compilation error:
Table '"my_schema"."my_table"' does not exist

并获得

df.to_sql(..., method=pd_writer)

如果我要连接到Snowflake,为什么要谈论pandas.io.sql.DatabaseError: Execution failed on sql 'SELECT name FROM sqlite_master WHERE type='table' AND name=?;': not all arguments converted during string formatting ?熊猫功能是否需要不同的连接? 我的库:

sqlite_master

2 个答案:

答案 0 :(得分:1)

我发现了我的问题-我将quote_identifiers=False添加到了 write_pandas(self.conn, daily_epc_df, table_name=my_table, schema=my_schema, quote_identifiers=False) 现在可以了。 但是,默认行为将被破坏似乎是非常错误的,我仍然很怀疑。

答案 1 :(得分:0)

嗯,我已经做了一些我认为比熊猫更好的事情......

告诉我你是否同意......Snowball

CREATE OR REPLACE PROCEDURE DEMO_DB.PUBLIC.SNOWBALL(
    db_name STRING,
    schema_name STRING,
    snowball_table STRING,
    max_age_days FLOAT,
    limit FLOAT
  )
  RETURNS VARIANT
  LANGUAGE JAVASCRIPT
  COMMENT = 'Collects table and column stats.'
  EXECUTE AS OWNER
  AS
$$
 
var validLimit = Math.max(LIMIT, 0); // prevent SQL syntax error caused by negative numbers
var sqlGenerateInserts = `
WITH snowball_tables AS (
  SELECT CONCAT_WS('.', table_catalog, table_schema, table_name) AS full_table_name, *
    FROM IDENTIFIER(?) -- <<DB_NAME>>.INFORMATION_SCHEMA.TABLES
  ),
snowball_columns AS (
  SELECT CONCAT_WS('.', table_catalog, table_schema, table_name) AS full_table_name, *
    FROM IDENTIFIER(?) -- <<DB_NAME>>.INFORMATION_SCHEMA.COLUMNS
  ),
snowball AS (
  SELECT table_name, MAX(stats_run_date_time) AS stats_run_date_time
    FROM IDENTIFIER(?) -- <<SNOWBALL_TABLE>> table
   GROUP BY table_name
)
 
SELECT full_table_name, aprox_row_count,
    CONCAT (
      'INSERT INTO IDENTIFIER(''', ?, ''') ', -- SNOWBALL table
      '(table_name,total_rows,table_last_altered,table_created,table_bytes,col_name,',
      'col_data_type,col_hll,col_avg_length,col_null_cnt,col_min,col_max,col_top,col_mode,col_avg,stats_run_date_time)',
      'SELECT ''', full_table_name, ''' AS table_name, ',
      table_stats_sql,
      ', ARRAY_CONSTRUCT( ', col_name, ') AS col_name',
      ', ARRAY_CONSTRUCT( ', col_data_type, ') AS col_data_type',
      ', ARRAY_CONSTRUCT( ', col_hll, ') AS col_hll',
      ', ARRAY_CONSTRUCT( ', col_avg_length, ') AS col_avg_length',
      ', ARRAY_CONSTRUCT( ', col_null_cnt, ') AS col_null_cnt',
      ', ARRAY_CONSTRUCT( ', col_min, ') AS col_min',
      ', ARRAY_CONSTRUCT( ', col_max, ') AS col_max',
      ', ARRAY_CONSTRUCT( ', col_top, ') AS col_top',
      ', ARRAY_CONSTRUCT( ', col_MODE, ') AS col_MODE',
      ', ARRAY_CONSTRUCT( ', col_AVG, ') AS col_AVG',
      ', CURRENT_TIMESTAMP() AS stats_run_date_time ',
      ' FROM ', quoted_table_name
    ) AS insert_sql
FROM (
    SELECT
        tbl.full_table_name,
        tbl.row_count AS aprox_row_count,
        CONCAT ( '"', col.table_catalog, '"."',  col.table_schema, '"."',  col.table_name, '"' ) AS quoted_table_name,
        CONCAT (
          'COUNT(1) AS total_rows,''',
          IFNULL( tbl.last_altered::VARCHAR, 'NULL'), ''' AS table_last_altered,''',
          IFNULL( tbl.created::VARCHAR, 'NULL'), ''' AS table_created,',
          IFNULL( tbl.bytes::VARCHAR, 'NULL'), ' AS table_bytes' ) AS table_stats_sql,
        LISTAGG (
          CONCAT ('''', col.full_table_name, '.', col.column_name, '''' ), ', '
          ) AS col_name,
        LISTAGG ( CONCAT('''', col.data_type, '''' ), ', ' ) AS col_data_type,
        LISTAGG ( CONCAT( ' HLL(', '"', col.column_name, '"',') ' ), ', ' ) AS col_hll,
        LISTAGG ( CONCAT( ' AVG(ZEROIFNULL(LENGTH(', '"', col.column_name, '"','))) ' ), ', ' ) AS col_avg_length,
        LISTAGG ( CONCAT( ' SUM( IFF( ', '"', col.column_name, '"',' IS NULL, 1, 0) ) ' ), ', ') AS col_null_cnt,
        LISTAGG ( IFF ( col.data_type = 'NUMBER', CONCAT ( ' MODE(', '"', col.column_name, '"', ') ' ), 'NULL' ), ', ' ) AS col_MODE,
        LISTAGG ( IFF ( col.data_type = 'NUMBER', CONCAT ( ' MIN(', '"', col.column_name, '"', ') ' ), 'NULL' ), ', '  ) AS col_min,
        LISTAGG ( IFF ( col.data_type = 'NUMBER', CONCAT ( ' MAX(', '"', col.column_name, '"', ') ' ), 'NULL' ), ', ' ) AS col_max,
        LISTAGG ( IFF ( col.data_type = 'NUMBER', CONCAT ( ' AVG(', '"', col.column_name,'"',') ' ), 'NULL' ), ', ' ) AS col_AVG,
        LISTAGG ( CONCAT ( ' APPROX_TOP_K(', '"', col.column_name, '"', ', 100, 10000)' ), ', ' ) AS col_top
    FROM snowball_tables tbl JOIN snowball_columns col ON col.full_table_name = tbl.full_table_name
    LEFT OUTER JOIN snowball sb ON sb.table_name = tbl.full_table_name
    WHERE (tbl.table_catalog, tbl.table_schema) = (?, ?)
         AND ( sb.table_name IS NULL OR sb.stats_run_date_time < TIMESTAMPADD(DAY, - FLOOR(?), CURRENT_TIMESTAMP()) )
         --AND tbl.row_count > 0 -- NB: also excludes views (table_type = 'VIEW')
    GROUP BY tbl.full_table_name, aprox_row_count, quoted_table_name, table_stats_sql, stats_run_date_time
    ORDER BY stats_run_date_time NULLS FIRST )
    LIMIT ` + validLimit; 
 
var tablesAnalysed = [];
var currentSql;
 
try {
  currentSql = sqlGenerateInserts;
  var generateInserts = snowflake.createStatement( {
          sqlText: currentSql,
          binds: [
              `"${DB_NAME}".information_schema.tables`,
              `"${DB_NAME}".information_schema.columns`,
              SNOWBALL_TABLE, SNOWBALL_TABLE,
              DB_NAME, SCHEMA_NAME, MAX_AGE_DAYS, LIMIT
            ]
        } );
 
  var insertStatements = generateInserts.execute();
  // loop over generated INSERT statements and execute them
  while (insertStatements.next()) {
    var tableName = insertStatements.getColumnValue('FULL_TABLE_NAME');
    currentSql = insertStatements.getColumnValue('INSERT_SQL');
    var insertStatement = snowflake.createStatement( {
            sqlText: currentSql,
            binds: [ SNOWBALL_TABLE ]
          } );
    var insertResult = insertStatement.execute();
    tablesAnalysed.push(tableName);
  }
 
  return { result: "SUCCESS", analysedTables: tablesAnalysed };
 
}
catch (err)  {
  return {
      error: err,
      analysedTables: tablesAnalysed,
      sql: currentSql
  };
}
 
$$;