我已从找到的here的转换器存储库中下载了HuggingFace BERT模型,并希望通过使用run_ner.py脚本在自定义NER标签上训练该模型,因为该脚本在本节中被引用为here “命名实体识别”。
我在代码中将模型(默认为“ bert-base-german-cased”),data_dir(“ Data / sentence_data.txt”)和标签(“ Data / labels.txt”)定义为默认代码。
现在我在命令行中使用此输入:
python run_ner.py --output_dir="Models" --num_train_epochs=3 --logging_steps=100 --do_train --do_eval --do_predict
但是它所做的只是告诉我:
Some weights of the model checkpoint at bert-base-german-cased were not used when initializing BertForTokenClassification: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.w
eight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias']
- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPretraining model).
- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of BertForTokenClassification were not initialized from the model checkpoint at bert-base-german-cased and are newly initialized: ['classifier.weight', 'classifier.bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
此后,它只是停止,而不是结束脚本,而只是等待。
有人知道这可能是什么问题吗?我是否缺少参数?
我的CoNLL格式的statement_data.txt看起来像这样(小片段):
Strafverfahren O
gegen O
; O
wegen O
Diebstahls O
hat O
das O
Amtsgericht Ort
Leipzig Ort
- O
Strafrichter O
这就是我在labels.txt中定义标签的方式:
"Date", "Delikt", "Strafe_Tatbestand", "Schadensbetrag", "Geständnis_ja", "Vorstrafe_ja", "Vorstrafe_nein", "Ort",
"Strafe_Gesamtfreiheitsstrafe_Dauer", "Strafe_Gesamtsatz_Dauer", "Strafe_Gesamtsatz_Betrag"
答案 0 :(得分:0)
找出问题所在。这与CUDA驱动程序与pytorch的安装版本不兼容有关。
对于使用Nvidia GPU遇到相同问题的任何人:转到Nvidia控制面板->帮助->系统信息->组件,名称栏中有一个名为“ NVCUDA.DLL”的驱动程序号。可以在pytorch.org的安装构建器中选择相应的CUDA版本。
此外,在Translators存储库中有一个不错的自述文件,解释了使用CLI命令here训练BERT模型的所有步骤。