这是我为Eratosthenes的Sieve for python3找到的算法代码。我想要做的是编辑它,这样我就可以输入一个底部和顶部的范围,然后输入一个素数列表到底部,它将输出该范围内的素数列表。 但是,我不太清楚该怎么做。 如果你能提供帮助,我们将不胜感激。
from math import sqrt
def sieve(end):
if end < 2: return []
#The array doesn't need to include even numbers
lng = ((end//2)-1+end%2)
# Create array and assume all numbers in array are prime
sieve = [True]*(lng+1)
# In the following code, you're going to see some funky
# bit shifting and stuff, this is just transforming i and j
# so that they represent the proper elements in the array.
# The transforming is not optimal, and the number of
# operations involved can be reduced.
# Only go up to square root of the end
for i in range(int(sqrt(end)) >> 1):
# Skip numbers that aren’t marked as prime
if not sieve[i]: continue
# Unmark all multiples of i, starting at i**2
for j in range( (i*(i + 3) << 1) + 3, lng, (i << 1) + 3):
sieve[j] = False
# Don't forget 2!
primes = [2]
# Gather all the primes into a list, leaving out the composite numbers
primes.extend([(i << 1) + 3 for i in range(lng) if sieve[i]])
return primes
答案 0 :(得分:2)
我认为以下是有效的:
def extend_erathostene(A, B, prime_up_to_A):
sieve = [ True ]* (B-A)
for p in prime_up_to_A:
# first multiple of p greater than A
m0 = ((A+p-1)/p)*p
for m in range( m0, B, p):
sieve[m-A] = False
limit = int(ceil(sqrt(B)))
for p in range(A,limit+1):
if sieve[p-A]:
for m in range(p*2, B, p):
sieve[m-A] = False
return prime_up_to_A + [ A+c for (c, isprime) in enumerate(sieve) if isprime]
答案 1 :(得分:2)
这个问题被称为“Eratosthenes的分段筛”。谷歌提供了一些有用的参考资料。
答案 2 :(得分:0)
您已经拥有从2到end
的素数,因此您只需要过滤返回的列表。
答案 3 :(得分:0)
一种方法是使用end = top
运行筛选代码并修改最后一行,只给出大于底部的数字:
如果范围与其幅度相比较小(即上下与底部相比较小),那么最好使用不同的算法:
从底部开始并迭代奇数,检查它们是否为素数。你需要一个isprime(n)函数来检查n是否可被1到sqrt(n)中的所有奇数整除:
def isprime(n):
i=2
while (i*i<=n):
if n%i==0: return False
i+=1
return True