我正在尝试根据日期类列对数据集进行采样, 季度为“有效”,每月为“无效”
这是我的代码:
library(dplyr)
library(lubridate)
## data ##
df <- structure(list(
mes = c("01/01/2000", "01/02/2000", "01/03/2000",
"01/04/2000", "01/05/2000", "01/06/2000", "01/07/2000", "01/08/2000",
"01/09/2000", "01/10/2000", "01/11/2000", "01/12/2000"),
status = c("Active", "Inactive",
"Active", "Inactive",
"Active", "Inactive",
"Active", "Active",
"Inactive", "Active",
"Inactive", "Active")),
class = "data.frame",
row.names = c(NA, -12L))
## setting date class for "mes" column ##
df$mes <- as.Date(df$mes,
format = "%d/%m/%Y")
## sampling ##
sample_df <- df %>%
dplyr :: filter(status %in% "Active",
status %in% "Inactive") %>%
dplyr :: filter_if(status == "Active",
month(mes) %in% c(3,6,9,12),
month(mes) %in% c(1,2,3,4,5,6,7,8,9,10,11,12))
控制台输出:
Error in is_logical(.p) : objeto 'status' no encontrado
还有其他可以用来完成此任务的库吗?
答案 0 :(得分:2)
对于dplyr::filter
,如果我们使用,
,则意味着&
,而我们需要|
。使用&
会导致0 rows
,因为“状态”不能在同一位置同时具有“有效”和“无效”
df %>%
dplyr::filter(status %in% "Active"| status %in% "Inactive") %>%
dplyr::filter(status == 'Active', month(mes) %in% c(3, 6, 9, 12))
此外,当我们使用%in%
时,它可以使用vector
> = 1
%in%
值在运算符length
的rhs中
df %>%
dplyr::filter(status %in% c("Active", "Inactive")) %>%
dplyr::filter(status == 'Active', month(mes) %in% c(3, 6, 9, 12))
在OP的过滤器语句中
...
month(mes) %in% c(3,6,9,12),
month(mes) %in% c(1,2,3,4,5,6,7,8,9,10,11,12)
暗示两个条件都应为真,但其中一个是另一个条件的子集
答案 1 :(得分:1)
要过滤"Active"
状态的季度月份和“无效”状态的所有月份,可以执行以下操作:
library(dplyr)
df %>%
mutate(month = lubridate::month(mes)) %>%
filter(status == "Active" & month %in% c(3,6,9,12) |
status == "Inactive" & month %in% 1:12)
# mes status month
#1 2000-02-01 Inactive 2
#2 2000-03-01 Active 3
#3 2000-04-01 Inactive 4
#4 2000-06-01 Inactive 6
#5 2000-09-01 Inactive 9
#6 2000-11-01 Inactive 11
#7 2000-12-01 Active 12
由于您希望所有月份都处于“非活动”状态,因此您也可以执行以下操作:
df %>%
mutate(month = lubridate::month(mes)) %>%
filter(status == "Active" & month %in% c(3,6,9,12) |
status == "Inactive")