运行GRU模型时出现问题;缺少forward()的参数

时间:2020-10-29 03:17:47

标签: pytorch gated-recurrent-unit

我正在研究GRU,当我尝试进行预测时,出现错误,表明我需要为forward()定义h。在谷歌搜索和搜索堆栈溢出数小时后,我尝试了几件事,并没有耐心。

这是课程:

Rscript -e "Sys.setenv(RSTUDIO_PANDOC='/usr/lib/rstudio/bin/pandoc'); bookdown::render_book('index.Rmd', 'bookdown::gitbook')"

,然后在这里加载模型并尝试进行预测。两者都在同一脚本中。

from selenium import webdriver
from selenium.webdriver.support.ui import Select

driver = webdriver.Chrome('/Users/toanhac/Downloads/chromedriver')


url = 'https://mail.google.com/mail/u/0/#inbox'
driver.get(url)

driver.implicitly_wait(15) 


driver.find_element_by_id("identifierId").send_keys(mail)
driver.find_element_by_id("identifierNext").click()

driver.find_element_by_name("password").send_keys(password)
driver.find_element_by_id("passwordNext").click()

没有Gmodel的任何其他参数,我得到以下信息:

class GRUNet(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim, n_layers, drop_prob = 0.2):
        super(GRUNet, self).__init__()
        self.hidden_dim = hidden_dim
        self.n_layers = n_layers
        
        self.gru = nn.GRU(input_dim, hidden_dim, n_layers, batch_first=True, dropout=drop_prob)
        self.fc = nn.Linear(hidden_dim, output_dim)
        self.relu = nn.ReLU()
    
    def forward(self, x, h):
        out, h = self.gru(x,h)
        out = self.fc(self.relu(out[:,-1]))
        return out, h
    
    def init_hidden(self, batch_size):
        weight = next(self.parameters()).data
        hidden = weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().to(device)
        return hidden

1 个答案:

答案 0 :(得分:0)

您还需要提供隐藏状态,通常最初是全零或只是None
那就是您要么需要显式提供这样的内容:

hidden_state = torch.zeros(size=(num_layers*direction, batch_size, hidden_dim)).to(device)
pred = Gmodel(inputs, hidden_state)

或干脆做:

hidden_state = None 
pred = Gmodel(inputs, hidden_state)