使用ReLU激活功能的神经网络

时间:2020-10-28 14:10:48

标签: python-3.x tensorflow keras neural-network relu

我正在尝试使用神经网络来预测房屋价格。这是数据集顶部的样子:

    Price   Beds    SqFt    Built   Garage  FullBaths   HalfBaths   LotSqFt
    485000  3       2336    2004    2       2.0          1.0        2178.0
    430000  4       2106    2005    2       2.0          1.0        2178.0
    445000  3       1410    1999    1       2.0          0.0        3049.0

...

我正在尝试使用ReLU激活功能,但是即使经过100个时间段,我的准确度仍为零。我在这里想念东西吗?

X = dataset[:,1:8] #predictor variables
Y = dataset[:,0] #sell price

#Normalize data
from sklearn import preprocessing
X_scale = min_max_scaler.fit_transform(X)
X_scale

#Split Data
from sklearn.model_selection import train_test_split
X_train, X_val_and_test, Y_train, Y_val_and_test = train_test_split(X_scale, Y, test_size=0.3)
X_val, X_test, Y_val, Y_test = train_test_split(X_val_and_test, Y_val_and_test, test_size=0.5)
print(X_train.shape, X_val.shape, X_test.shape, Y_train.shape, Y_val.shape, Y_test.shape)
  • 实施模式
from keras.models import Sequential
from keras.layers import Dense

model = Sequential(
    Dense(32, activation='relu', input_shape=(7,)))

model.compile(optimizer='sgd',
              loss='binary_crossentropy',
              metrics=['accuracy'])

hist = model.fit(X_train, Y_train,
          batch_size=32, epochs=100,
          validation_data=(X_val, Y_val))

model.evaluate(X_test, Y_test)[1]
## Output: 3/3 [==============================] - 0s 3ms/step - loss: -5698781.5000 - accuracy: 0.0000e+00

2 个答案:

答案 0 :(得分:1)

由于您忘记添加输出层,因此您的精度为0,因此损失计算不正确。除此之外,准确性不是一个重要指标,因为您要进行回归而不是分类。

您需要像这样修改模型:

model = Sequential(
    Dense(32, activation='relu', input_shape=(7,)),
    Dense(1, activation='linear'))

此外,由于要进行回归而不是分类,因此必须在model.compile()中将损失修改为“ mse”而不是“ binary_crossentropy”。

model.compile(optimizer='sgd',
              loss='mse',
              metrics=['mean_squared_error'])

答案 1 :(得分:1)

您也正在解决一个约束问题,

所以您应该使用均方作为损失函数...

并且您还试图预测一个值,因此您应该再增加一层以输出该值。