我一直在使用cv.glmnet
函数来拟合套索逻辑回归模型。我正在使用R
这是我的代码。我正在使用iris
数据集。
df = iris %>%
mutate(Species = as.character(Species)) %>%
filter(!(Species =="setosa")) %>%
mutate(Species = as.factor(Species))
X = data.matrix(df %>% select(-Species))
y = df$Species
Model = cv.glmnet(X, y, alpha = 1, family = "binomial")
如何从cv.glmnet
对象(模型)获得模型精度。
如果我在正常的Logistic回归模型上使用插入符号,则输出中已经存在准确性。
train_control = trainControl(method = "cv", number = 10)
M2 = train(Species ~., data = df, trControl = train_control,
method = "glm", family = "binomial")
M2$results
但是cv.glmnet
对象似乎不包含此信息。
答案 0 :(得分:2)
您要像下面的模型2一样添加type.measure='class'
,否则family='binomial'
的默认值为'deviance'
。
df = iris %>%
mutate(Species = as.character(Species)) %>%
filter(!(Species =="setosa")) %>%
mutate(Species = as.factor(Species))
X = data.matrix(df %>% select(-Species))
y = df$Species
Model = cv.glmnet(X, y, alpha = 1, family = "binomial")
Model2 = cv.glmnet(X, y, alpha = 1, family = "binomial", type.measure = 'class')
然后cvm
给出误分类率。
Model2$lambda ## lambdas used in CV
Model2$cvm ## mean cross-validated error for each of those lambdas
如果您想要获得最佳lambda的结果,则可以使用lambda.min
Model2$lambda.min ## lambda with the lowest cvm
Model2$cvm[Model2$lambda==Model2$lambda.min] ## cvm for lambda.min