熊猫:用缺少的分隔符分隔两列

时间:2020-10-23 13:18:13

标签: python pandas formatting time-series separator

我有类似的数据:

00052600150.00942615
00052601000.01014910
00052601050.02709672
00052601100.11454732
00052601150.23151254
00052601200.36262522
00052601250.66432348
00052601301.07723763
00052601351.26019487
00052601401.20568581

前10位数字代表时间步YYMMDDhhmm,后跟数字

应该是0005260010,0.00799872,其中第一个块是一个时间步,第二个块是一个度量。

我曾经尝试过使用熊猫读取数据并将其转换为str,但随后我丢失了前导零?有没有一种方法可以用数字分隔浮点数?

问候

2 个答案:

答案 0 :(得分:0)

带有大熊猫的正则表达式可以分隔列而无需分度符

# sample data
df = pd.DataFrame({'A': [
    '00052600150.00942615',
    '00052601000.01014910',
    '00052601050.02709672',
    '00052601100.11454732',
    '00052601150.23151254',
    '00052601200.36262522',
    '00052601250.66432348',
    '00052601301.07723763',
    '00052601351.26019487',
    '00052601401.20568581',
]})

df3 = df['A'].str.extract(
    r'(\d{2})(\d{2})(\d{2})(\d{2})(\d{2})(\d\.\d*)',
    expand=True)
df3.columns = ['Year', 'Month', 'Day', 'Hour', 'Minute', 'Reading']
print(df3)

输出

  Year Month Day Hour Minute     Reading
0   00    05  26   00     15  0.00942615
1   00    05  26   01     00  0.01014910
2   00    05  26   01     05  0.02709672
3   00    05  26   01     10  0.11454732
4   00    05  26   01     15  0.23151254
5   00    05  26   01     20  0.36262522
6   00    05  26   01     25  0.66432348
7   00    05  26   01     30  1.07723763
8   00    05  26   01     35  1.26019487
9   00    05  26   01     40  1.20568581

答案 1 :(得分:0)

您可以将列读为3,然后按位置划分值

str

出局:

df = pd.read_csv('yourfile.csv', header=None, dtype='str', names=['col1'])
df['time'] = pd.to_datetime(df.col1.str[:10], unit='s')
df['value'] = (df.col1.str[10:]).astype('float')
df