我试图遍历所有行,并将图1中所示的数据转换为图2中的数据。
在获取相应的Quarter值时遇到麻烦,因为我为每种颜色获得的列表不是按顺序排列的。您能建议我如何获得Pic2的结果吗?
b=[]
r=[]
g=[]
p=[]
for col, col_val in Sample.iteritems():
for i in col_val.values:
if 'Blue' in i:
b.append(i[i.find('(')+1 : i.find('-')])
elif 'Purple' in i:
p.append(i[i.find('(')+1 : i.find('-')])
elif 'Green' in i:
g.append(i[i.find('(')+1 : i.find('-')])
elif 'Red' in i:
r.append(i[i.find('(')+1 : i.find('-')])
答案 0 :(得分:0)
项目替换了项目后,该问题已解决。
b=[]
r=[]
g=[]
p=[]
q=[]
for col, col_val in Sample.iterrows():
for i in col_val.values:
if 'Blue' in i:
b.append(pd.to_numeric(i[i.find('(')+1 : i.find('-')]))
elif 'Purple' in i:
p.append(pd.to_numeric(i[i.find('(')+1 : i.find('-')]))
elif 'Green' in i:
g.append(pd.to_numeric(i[i.find('(')+1 : i.find('-')]))
elif 'Red' in i:
r.append(pd.to_numeric(i[i.find('(')+1 : i.find('-')]))
else:
q.append(i)
pd.DataFrame(list(zip(q,g,p,r,b))).rename(columns={0:'Quarter',1:'Green',2:'Purple',3:'Red',4:'Blue'})
答案 1 :(得分:0)
我考虑了另一种方法。我想出了另一种方法:垂直连接索引列和目标列,然后拆分该列并随后垂直连接。我以为会容易些,但是很奇怪。
df.columns = ['Quarter','value','value','value','value']
df1 = pd.DataFrame()
for i in range(1,len(df.columns)):
df1 = df1.append(df.iloc[:,[0,i]], ignore_index=True)
df2 = pd.concat([df1[['Quarter']], df1['value'].str.split("(", expand=True)], axis=1)
df2 = pd.concat([df2[['Quarter',0]], df2[1].str.split('-', expand=True)], axis=1)
df2.columns = ['Quarter', 'color', 'value', 'tmp']
df2.drop('tmp', inplace=True, axis=1)
final = pd.DataFrame()
for k in df2['Quarter'].unique():
tmp = df2[df2['Quarter'] == k]
tmp = tmp.pivot(index='Quarter',columns='color')
final = final.append(tmp, ignore_index=True)
final = final.droplevel(0, axis=1)
final['Quarter'] = df2['Quarter'].unique()
final = final[['Quarter','Green','Purple','Red','Blue']]
final
color Quarter Green Purple Red Blue
0 Q2 1 6 4 3
1 Q3 6 10 2 7
2 Q4 3 7 6 2