我有一个数据框,如下所示:
col1 = ['a','b','c','a','c','a','b','c','a']
col2 = [1,1,0,1,1,0,1,1,0]
df2 = pd.DataFrame(zip(col1,col2),columns=['name','count'])
name count
0 a 1
1 b 1
2 c 0
3 a 1
4 c 1
5 a 0
6 b 1
7 c 1
8 a 0
我试图找到与“名称”列中每个元素相对应的零个数与零个总数之和+1的比率。 首先,我将计数汇总如下:
for j in df2.name.unique():
print(j)
zero_ct = zero_one_frequencies[zero_one_frequencies['name'] == j][0]
full_ct = zero_one_frequencies[zero_one_frequencies['name'] == j][0] + zero_one_frequencies[zero_one_frequencies['name'] == j][1]
zero_pb = zero_ct / full_ct
one_pb = 1 - zero_pb
print(f"ZERO rations for {j} = {zero_pb}")
print(f"One ratios for {j} = {one_pb}")
print("="*30)
输出看起来像:
a
ZERO ratios for a = 0 0.5
dtype: float64
One ratios for a = 0 0.5
dtype: float64
==============================
b
ZERO ratios for b = 1 0.0
dtype: float64
One ratios for b = 1 1.0
dtype: float64
==============================
c
ZERO ratios for c = 2 0.333333
dtype: float64
One ratios for c = 2 0.666667
dtype: float64
==============================
我的目标是向数据框中添加2个新列:“名称_0”和“名称_1”,其中“名称”列中每个元素的比率值都为th。我尝试了一些措施,但未达到预期效果:
for j in df2.name.unique():
print(j)
zero_ct = zero_one_frequencies[zero_one_frequencies['name'] == j][0]
full_ct = zero_one_frequencies[zero_one_frequencies['name'] == j][0] + zero_one_frequencies[zero_one_frequencies['name'] == j][1]
zero_pb = zero_ct / full_ct
one_pb = 1 - zero_pb
print(f"ZERO Probablitliy for {j} = {zero_pb}")
print(f"One Probablitliy for {j} = {one_pb}")
print("="*30)
condition1 = [ df2['name'].eq(j) & df2['count'].eq(0)]
condition2 = [ df2['name'].eq(j) & df2['count'].eq(1)]
choice1 = zero_pb.tolist()
choice2 = one_pb.tolist()
print(f'choice1 = {choice1}, choice2 = {choice2}')
df2["name"+str("_0")] = np.select(condition1, choice1, default=0)
df2["name"+str("_1")] = np.select(condition2, choice2, default=0)
该列将使用名称元素'c'的值进行更新。可以预期,因为最后一次计算的值将用于更新所有值。
能否请您帮助我了解是否还有另一种有效使用np.select的方法?
预期输出:
name count name_0 name_1
0 a 1 0.000000 0.500000
1 b 1 0.000000 1.000000
2 c 0 0.333333 0.000000
3 a 1 0.000000 0.500000
4 c 1 0.000000 0.666667
5 a 0 0.500000 0.000000
6 b 1 0.000000 1.000000
7 c 1 0.000000 0.666667
8 a 0 0.500000 0.000000
答案 0 :(得分:1)
我无权访问zero_one_frequencies df。因此,我采取了尝试以自己的方式解决问题的自由。
import pandas as pd
import numpy as np
col1 = ['a','b','c','a','c','a','b','c','a']
col2 = [1,1,0,1,1,0,1,1,0]
df2 = pd.DataFrame(zip(col1,col2),columns=['name','count'])
df2["name_0"] = 0
df2["name_1"] = 0
for name in df2['name'].unique():
df_name = df2[df2['name'] == name]
prob_1 = sum(df_name['count']/df_name.shape[0])
for count in df2['count'].unique():
indx = np.where((df2['name'] == name) & (df2['count'] == count))
df2["name_" + str(count)].loc[indx] = np.abs(((count +1) % 2) - prob_1)
输出:
name count name_0 name_1
0 a 1 0.000000 0.500000
1 b 1 0.000000 1.000000
2 c 0 0.333333 0.000000
3 a 1 0.000000 0.500000
4 c 1 0.000000 0.666667
5 a 0 0.500000 0.000000
6 b 1 0.000000 1.000000
7 c 1 0.000000 0.666667
8 a 0 0.500000 0.000000
为了解np。选择我建议您参阅this post。
答案 1 :(得分:0)
以下代码解决了该问题。但是,我找不到使用numpy.select来获得相同效果的方法。
df2["name"+str("_0")] = 0.0
df2["name"+str("_1")] = 0.0
for j in df2.name.unique():
print(j)
zero_ct = zero_one_frequencies[zero_one_frequencies['name'] == j][0]
full_ct = zero_one_frequencies[zero_one_frequencies['name'] == j][0] + zero_one_frequencies[zero_one_frequencies['name'] == j][1]
zero_pb = zero_ct / full_ct
one_pb = 1 - zero_pb
print(f"ZERO Probablitliy for {j} = {zero_pb.tolist()[0]}")
print(f"One Probablitliy for {j} = {one_pb.tolist()[0]}")
print("="*30)
for idx in df2[df2['name']== j ].index:
print("Index:::", idx)
if df2['count'].iloc[idx] == 0:
df2.at[idx, "name"+str("_0")] = zero_pb.tolist()[0]
print(f'Count for {j} at index {idx} is {a}')
print('printing name_0: ', df2["name"+str("_0")].iloc[idx])
print("*"*30)
elif df2['count'].iloc[idx] == 1:
df2.at[idx, "name"+str("_1")] = one_pb.tolist()[0]
print(f'Count for {j} at index {idx} is {b}')
print('printing name_1: ', df2["name"+str("_1")].iloc[idx])
print("*"*30)