我的数据框如下:
df:
A B
0 a g
1 f g
2 a g
3 a d
4 h d
5 f a
对于每列前2个最频繁的值(n = 2),输出应为:
top_df:
A B
0 a g
1 f d
谢谢
答案 0 :(得分:1)
这应该有效
n = 2
df.apply(lambda x: pd.Series(x.value_counts().index[:n]))
答案 1 :(得分:0)
this之类的东西可能会帮助
maxes = dict()
for col in df.columns:
frequencies = df[col].value_counts()
# value counts automatically sorts, so just take the first 2
max[col] = frequencies[:2]
答案 2 :(得分:0)
解决方案:
要获取n
的最频繁值,只需子集.value_counts()
并获取索引:
import pandas as pd
df = pd.read_csv('test.csv')
# METHOD 1 : Lil lengthy and inefficient
top_dict = {}
n_freq_items = 2
top_dict['A'] = df.A.value_counts()[:n_freq_items].index.tolist()
top_dict['B'] = df.B.value_counts()[:n_freq_items].index.tolist()
top_df = pd.DataFrame(top_dict)
print(top_df)
df.apply(lambda x: pd.Series(x.value_counts()[:n_freq_items].index))
# METHOD 2 : Small, and better : taking this method from @myccha. As I found this better
top_df = df.apply(lambda x: pd.Series(x.value_counts()[:n_freq_items].index))
print(top_df)
输入数据:
# test.csv
A,B
a,g
f,g
a,g
a,d
h,d
f,a
输出:
A B
0 a g
1 f d
注意::我从 @myccha 那里获得了解决方案,这是该帖子的另一个答案,因为我发现他的答案更有帮助,因此将其添加为方法2。