我有一个庞大的数据文件,我将其按人细分为多个日段,然后绘制当天发生的事件以及这些事件的持续时间(A,B或C)
数据的结构如下:t_z是行之间的间隔,period是事件变量,此示例适用于一天中的一个人(实际数据是xdays xpersons)
intervals <- c(0,5.1166667,6.2166667,3.5166667,0.06666667,3.0666667,6.3,
2.3833333,0.06666667,4.7,18.666667,17.383333,21.533333,
0.1,0.08333333,0.85)
period <- c("C", "B", "A", "B", "C", "B", "C", "B",
"C", "B", "C", "B", "C", "B", "C", "B")
i <- as.data.frame(intervals)
p <- as.data.frame(period)
d <- cbind(i,p)
获取条形图很容易,但是它每天都会将所有“期间”堆积成块:
d$id<-1
e <- ggplot(d,aes(id))
e + geom_bar(aes(fill=period))
但是,我希望每个“时期”都可以用其大小单独表示:
感谢YBS,但是您的方法很接近,但是期间的大小并不正确吗?第一个C = 5与第一个A = 5的大小不同吗?
intervals <- c(5, 15, 5, 3,7,3,6, 2)
period <- c("C","B","A","B","C","B","C","B")
d <- data.frame(intervals,period)
colors=c("red","blue","green")
dc <- data.frame(period=unique(d$period),colors)
d2 <- d %>% mutate(nid = paste0(d$period,'_',row_number()))
d3 <- left_join(d2,dc, by="period")
d3$id<-1
e <- ggplot(d3,aes(x=id, y=intervals)) +
geom_col(aes(fill=nid))
e + scale_fill_manual(name='period', labels=d3$period, values=d3$colors )
答案 0 :(得分:0)
诀窍是创建带有所有离散值的newid
,然后通过scale_fill_manual
返回到初始周期值。您可以使用coord_flip()
使其水平,并根据需要更改图例位置。也许这是理想的输出。
intervals <- c(0, 5.1166667, 6.2166667, 3.5166667,0.6666667,3.0666667,6.3, 2.3833333)
#,0.06666667 , 4.7,18.666667,17.383333,21.533333, 0.1,0.08333333,0.85)
period <- c("C", "B", "A", "B", "C", "B", "C", "B")
# ,"C", "B", "C", "B", "C", "B", "C", "B")
d <- data.frame(intervals,period)
colors=c("red", "blue","green")
dc <- data.frame(period=unique(d$period),colors)
d2 <- d %>% mutate(nid = paste0(d$period,'_',row_number()))
d3 <- left_join(d2,dc, by="period")
d3$id<-1
e <- ggplot(d3,aes(x=id, y=intervals)) +
geom_col(aes(fill=nid))
e + scale_fill_manual(name='period', labels=d3$period, values=d3$colors )