下面是两个几乎完全相同的postgres查询,但产生了截然不同的查询计划和执行时间。我假设第一个查询很快,因为form_id ='W40'只有196个form_instance记录,而form_id ='W30L'则有7000个。但是为什么从200个记录跳到7000个记录(这对我来说似乎相对较小)导致查询时间如此惊人地增加?我试图以各种方式对数据进行索引以加快速度,但基本上是陷入困境。我怎样才能加快速度呢? (请注意,两个表的模式都包含在底部)。
explain analyze select form_id,form_instance_id,answer,field_id
from form_instances,field_instances
where workflow_state = 'DRqueued' and form_instance_id = form_instances.id
and field_id in ('Book_EstimatedDueDate','H_SubmittedDate','H_Ccode','miscarriage','miscarriage_of_multiple','stillbirth','AP_IUFD_of_multiple','maternal_death','birth_includes_transport','newborn_death','H_Pid','H_Mid1','H_Mid2','H_Mid3')
and (form_id = 'W40');
QUERY PLAN
Nested Loop (cost=0.00..70736.14 rows=4646 width=29) (actual time=0.000..20.000 rows=2399 loops=1)
-> Index Scan using form_id_and_workflow_state on form_instances (cost=0.00..1041.42 rows=507 width=8) (actual time=0.000..0.000 rows=196 loops=1)
Index Cond: (((form_id)::text = 'W40'::text) AND ((workflow_state)::text = 'DRqueued'::text))
-> Index Scan using index_field_instances_on_form_instance_id on field_instances (cost=0.00..137.25 rows=17 width=25) (actual time=0.000..0.102 rows=12 loops=196)
Index Cond: (field_instances.form_instance_id = form_instances.id)
Filter: ((field_instances.field_id)::text = ANY ('{Book_EstimatedDueDate,H_SubmittedDate,H_Ccode,miscarriage,miscarriage_of_multiple,stillbirth,AP_IUFD_of_multiple,maternal_death,birth_includes_transport,newborn_death,H_Pid,H_Mid1,H_Mid2,H_Mid3}'::text[]))
Total runtime: 30.000 ms
(7 rows)
explain analyze select form_id,form_instance_id,answer,field_id
from form_instances,field_instances
where workflow_state = 'DRqueued' and form_instance_id = form_instances.id
and field_id in ('Book_EstimatedDueDate','H_SubmittedDate','H_Ccode','miscarriage','miscarriage_of_multiple','stillbirth','AP_IUFD_of_multiple','maternal_death','birth_includes_transport','newborn_death','H_Pid','H_Mid1','H_Mid2','H_Mid3')
and (form_id = 'W30L');
QUERY PLAN
Hash Join (cost=34300.46..160865.40 rows=31045 width=29) (actual time=65670.000..74960.000 rows=102777 loops=1)
Hash Cond: (field_instances.form_instance_id = form_instances.id)
-> Bitmap Heap Scan on field_instances (cost=29232.57..152163.82 rows=531718 width=25) (actual time=64660.000..72800.000 rows=526842 loops=1)
Recheck Cond: ((field_id)::text = ANY ('{Book_EstimatedDueDate,H_SubmittedDate,H_Ccode,miscarriage,miscarriage_of_multiple,stillbirth,AP_IUFD_of_multiple,maternal_death,birth_includes_transport,newborn_death,H_Pid,H_Mid1,H_Mid2,H_Mid3}'::text[]))
-> Bitmap Index Scan on index_field_instances_on_field_id (cost=0.00..29099.64 rows=531718 width=0) (actual time=64630.000..64630.000 rows=594515 loops=1)
Index Cond: ((field_id)::text = ANY ('{Book_EstimatedDueDate,H_SubmittedDate,H_Ccode,miscarriage,miscarriage_of_multiple,stillbirth,AP_IUFD_of_multiple,maternal_death,birth_includes_transport,newborn_death,H_Pid,H_Mid1,H_Mid2,H_Mid3}'::text[]))
-> Hash (cost=5025.54..5025.54 rows=3388 width=8) (actual time=980.000..980.000 rows=10457 loops=1)
-> Bitmap Heap Scan on form_instances (cost=90.99..5025.54 rows=3388 width=8) (actual time=10.000..950.000 rows=10457 loops=1)
Recheck Cond: (((form_id)::text = 'W30L'::text) AND ((workflow_state)::text = 'DRqueued'::text))
-> Bitmap Index Scan on form_id_and_workflow_state (cost=0.00..90.14 rows=3388 width=0) (actual time=0.000..0.000 rows=10457 loops=1)
Index Cond: (((form_id)::text = 'W30L'::text) AND ((workflow_state)::text = 'DRqueued'::text))
Total runtime: 75080.000 ms
# \d form_instances Table "public.form_instances" Column | Type | Modifiers
-----------------+-----------------------------+-------------------------------------------------------------
id | integer | not null default nextval('form_instances_id_seq'::regclass)
form_id | character varying(255) |
created_at | timestamp without time zone |
updated_at | timestamp without time zone |
created_by_id | integer |
updated_by_id | integer |
workflow | character varying(255) |
workflow_state | character varying(255) |
validation_data | text |
Indexes:
"form_instances_pkey" PRIMARY KEY, btree (id)
"form_id_and_workflow_state" btree (form_id, workflow_state)
"index_form_instances_on_form_id" btree (form_id)
"index_form_instances_on_workflow_state" btree (workflow_state)
# \d field_instances
Table "public.field_instances"
Column | Type | Modifiers
------------------+-----------------------------+--------------------------------------------------------------
id | integer | not null default nextval('field_instances_id_seq'::regclass)
form_instance_id | integer |
created_at | timestamp without time zone |
updated_at | timestamp without time zone |
created_by_id | integer |
updated_by_id | integer |
field_id | character varying(255) |
answer | text |
state | character varying(255) |
explanation | text |
idx | integer | not null default 0
Indexes:
"field_instances_pkey" PRIMARY KEY, btree (id)
"field_instances__lower_answer" btree (lower(answer))
"index_field_instances_on_answer" btree (answer)
"index_field_instances_on_field_id" btree (field_id)
"index_field_instances_on_field_id_and_answer" btree (field_id, answer)
"index_field_instances_on_form_instance_id" btree (form_instance_id)
"index_field_instances_on_idx" btree (idx)
答案 0 :(得分:1)
以前是评论,但由于它似乎解决了这个问题,我会提出一个实际的答案。
系统对可能存在多少行的估计已关闭。我们可以看到,在第二个查询中,它估计了位图索引扫描中的3388行,但实际上得到了10457行。
所以你可能想要vacuum full analyze;
此外,其他可以提供极大帮助的命令包括reindex
和/或cluster
。
OP表示vacuum
没有帮助,但reindex
没有帮助。
答案 1 :(得分:1)
我不确定摘要中的数字来自哪里,因为您发布的第二个查询计划输出102777行,而第一个输出2399行。这是行数的43倍,因此选择一个非常不同的查询计划的事实并不令人惊讶。至于为什么运行时间差异甚至比这大,优化器在估计form_id和workflow_state上的过滤器的敏感度方面犯了一个中等的错误。您可能希望增加此数据库的default_statistics_target值并再次运行ANALYZE,如果您使用的是默认值非常低的PostgreSQL 8.3,则尤其如此。有关该参数的详细信息,请参阅Tuning Your PostgreSQL Server。
两者之间的差异很可能只是因为回答小型查询所需的所有数据都已经存在于内存中,而较大的数据需要更多的磁盘访问才能回答。在将数据读入缓存后,如果运行时间得到改善,则可以多次运行每个查询。您所做的REINDEX可能已经将索引缩小到足以适应两种情况下的缓存,从而解决了现在的问题。该指数可能会再次“臃肿”。