我的实现基于Tensorflow: custom training walkthrough和Tensorflow: introduction to modules, layers, and models。
我制作了一个带有自定义密集层的简单神经网络,几乎与我链接的链接中的教程相同。问题是它不会学习。我哪里出错了?
import tensorflow as tf
import tensorflow_datasets as tfds
ds = tfds.load('iris', split='train', as_supervised=True)
train_ds = ds.take(125).shuffle(125).batch(1)
test_ds = ds.skip(125).take(25).shuffle(25).batch(1)
class Dense(tf.Module):
def __init__(self, in_features, out_features, activation, name=None):
super().__init__(name=name)
self.activation = activation
self.w = tf.Variable(
tf.random.uniform([in_features, out_features]), name='w')
self.b = tf.Variable(tf.zeros([out_features]), name='b')
def __call__(self, x):
y = tf.matmul(x, self.w) + self.b
return self.activation(y)
class SequentialModule(tf.Module):
def __init__(self, name):
super().__init__(name=name)
self.dense1 = Dense(in_features=4, out_features=16, activation=tf.nn.relu)
self.dense2 = Dense(in_features=16, out_features=32, activation=tf.nn.relu)
self.dense3 = Dense(in_features=32, out_features=3, activation=tf.nn.softmax)
def __call__(self, x):
x = self.dense1(x)
x = self.dense2(x)
x = self.dense3(x)
return x
my_model = SequentialModule(name="model")
loss_object = tf.losses.sparse_categorical_crossentropy
def compute_loss(model, x, y):
out = model(x)
loss = loss_object(y, out, from_logits=False)
return out, loss
def compute_gradients(model, x, y):
with tf.GradientTape() as tape:
out, loss_value = compute_loss(model, x, y)
gradients = tape.gradient(loss_value, model.trainable_variables)
return out, loss_value, gradients
optimizer = tf.optimizers.Adam(lr=0.001)
for epoch in range(1, 5 + 1):
train_loss = tf.metrics.Mean(name='train_loss')
test_loss = tf.metrics.Mean(name='test_loss')
train_acc = tf.metrics.SparseCategoricalAccuracy()
test_acc = tf.metrics.SparseCategoricalAccuracy()
for input_batch, label_batch in train_ds:
output, loss_value, gradients = compute_gradients(my_model, input_batch, label_batch)
optimizer.apply_gradients(zip(gradients, my_model.trainable_variables))
train_loss.update_state(loss_value)
train_acc.update_state(label_batch, output)
for input_batch, label_batch in test_ds:
output, loss_value = compute_loss(my_model, input_batch, label_batch)
test_loss.update_state(loss_value)
test_acc.update_state(label_batch, output)
print(f'Epoch {epoch:03d} Loss {train_loss.result():=5.3f} Acc {train_acc.result():=5.3f} '
f'TLoss {test_loss.result():=5.3f} TAcc {test_acc.result():=5.3f}')
Epoch 001 Loss 10.445 Acc 0.352 TLoss 12.250 TAcc 0.240
Epoch 002 Loss 10.445 Acc 0.352 TLoss 12.250 TAcc 0.240
Epoch 003 Loss 10.445 Acc 0.352 TLoss 12.250 TAcc 0.240
Epoch 004 Loss 10.445 Acc 0.352 TLoss 12.250 TAcc 0.240
Epoch 005 Loss 10.445 Acc 0.352 TLoss 12.250 TAcc 0.240
答案 0 :(得分:0)
因此,似乎问题出在纯统计上。与链接的教程相反,如果您使用tf.initializers.GlorotUniform
作为初始值设定项,它会很好地学习。
self.w = tf.Variable(
tf.initializers.GlorotUniform()([in_features, out_features]), name='w')
Epoch 1 Loss 0.515 Acc 0.776 TLoss 0.537 TAcc 0.720
Epoch 2 Loss 0.186 Acc 0.928 TLoss 0.136 TAcc 0.920
Epoch 3 Loss 0.171 Acc 0.944 TLoss 0.104 TAcc 0.920
Epoch 4 Loss 0.230 Acc 0.920 TLoss 0.268 TAcc 0.880
Epoch 5 Loss 0.177 Acc 0.928 TLoss 0.284 TAcc 0.880
Epoch 6 Loss 0.144 Acc 0.944 TLoss 0.111 TAcc 0.920
Epoch 7 Loss 0.151 Acc 0.952 TLoss 0.137 TAcc 0.920
Epoch 8 Loss 0.192 Acc 0.952 TLoss 0.111 TAcc 0.960
Epoch 9 Loss 0.081 Acc 0.968 TLoss 0.074 TAcc 0.960
Epoch 10 Loss 0.222 Acc 0.920 TLoss 0.097 TAcc 1.000