Python matplotlib.pyplot Bigram绘图作为绘图

时间:2020-10-16 14:40:00

标签: python matplotlib plotly pca

我正在尝试将我的PCA和装载区合并为一个二元组。我找到了this的matplotlib.pyplot解决方案,但是,我想在plotly中生成相同的图。有人可以帮我解决如何用情节地制作这些东西吗?

def myplot(score,coeff,labels=None):
  xs = score[:,0]
  ys = score[:,1]
  n = coeff.shape[0]
  scalex = 1.0/(xs.max() - xs.min())
  scaley = 1.0/(ys.max() - ys.min())
  plt.scatter(xs * scalex,ys * scaley, c = y)
  for i in range(n):
    plt.arrow(0, 0, coeff[i,0], coeff[i,1],color = 'r',alpha = 0.5)
    if labels is None:
        plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, featurenames[i], color = 'g', ha = 'center', va = 'center')
    else:
        plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, labels[i], color = 'g', ha = 'center', va = 'center')
plt.xlim(-1,1)
plt.ylim(-1,1)
plt.xlabel("PC{}".format(1))
plt.ylabel("PC{}".format(2))
plt.grid()

myplot(components,np.transpose(pca.components_))
plt.show()

带有Pyplot的代码和绘图:

Code and Plot with Pyplot

编辑:由于我的问题应该更加集中(::

我可以重新创建PCA部分: PlotlyPlot

但是我不知道如何甚至可以在此图中重新创建“加载图”。

为了实现我的目标,我可以在上一个剧情上叠加一个Quiver Plot吗?

它的工作原理是否类似于:Arrow Overlay

1 个答案:

答案 0 :(得分:0)

好吧。在Plotly文档中浏览了更多内容之后,我能够找到所需的内容: https://plotly.com/python/pca-visualization/在“可视化负载”部分下的此链接上,描述了一种执行此操作的好方法:)

import plotly.express as px
from sklearn.decomposition import PCA
from sklearn import datasets
from sklearn.preprocessing import StandardScaler

df = px.data.iris()
features = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
X = df[features]

pca = PCA(n_components=2)
components = pca.fit_transform(X)

loadings = pca.components_.T * np.sqrt(pca.explained_variance_)

fig = px.scatter(components, x=0, y=1, color=df['species'])

for i, feature in enumerate(features):
    fig.add_shape(
        type='line',
        x0=0, y0=0,
        x1=loadings[i, 0],
        y1=loadings[i, 1]
    )
    fig.add_annotation(
        x=loadings[i, 0],
        y=loadings[i, 1],
        ax=0, ay=0,
        xanchor="center",
        yanchor="bottom",
        text=feature,
    )
fig.show()

Picture from docu