我正在使用常规MNIST数据集训练网络,遇到了下一个问题:
当我开始将valid_metrics
添加到loss_list和precision_list时,正在使用的GPU内存量每1或2个周期开始增加。
这是train_loop
的代码:
def train_model(model: torch.nn.Module,
train_dataset: torch.utils.data.Dataset,
valid_dataset: torch.utils.data.Dataset,
loss_function: torch.nn.Module = torch.nn.CrossEntropyLoss(),
optimizer_class: Type[torch.optim.Optimizer] = torch.optim,
optimizer_params: Dict = {},
initial_lr = 0.01,
lr_scheduler_class: Any = torch.optim.lr_scheduler.ReduceLROnPlateau,
lr_scheduler_params: Dict = {},
batch_size = 64,
max_epochs = 1000,
early_stopping_patience = 20):
optimizer = torch.optim.Adam(model.parameters(), lr=initial_lr, **optimizer_params)
lr_scheduler = lr_scheduler_class(optimizer, **lr_scheduler_params)
train_loader = torch.utils.data.DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=batch_size)
best_valid_loss = None
best_epoch = None
loss_list = list()
accuracy_list = list()
for epoch in range(max_epochs):
print(f'Epoch {epoch}')
start = timer()
train_single_epoch(model, optimizer, loss_function, train_loader)
valid_metrics = validate_single_epoch(model, loss_function, valid_loader)
loss_list.append(valid_metrics['loss'])
accuracy_list.append(valid_metrics['accuracy'])
print('time:', timer() - start)
print(f'Validation metrics: \n{valid_metrics}')
lr_scheduler.step(valid_metrics['loss'])
if best_valid_loss is None or best_valid_loss > valid_metrics['loss']:
print(f'Best model yet, saving')
best_valid_loss = valid_metrics['loss']
best_epoch = epoch
torch.save(model, './best_model.pth')
if epoch - best_epoch > early_stopping_patience:
print('Early stopping triggered')
return loss_list, accuracy_list
和代码validate_single_epoch
:
def validate_single_epoch(model: torch.nn.Module,
loss_function: torch.nn.Module,
data_loader: torch.utils.data.DataLoader):
loss_total = 0
accuracy_total = 0
for data in data_loader:
X, y = data
X, y = X.view(-1, 784), y.to(device)
X = X.to(device)
output = model(X)
loss = loss_function(output, y)
loss_total += loss
y_pred = output.argmax(dim = 1, keepdim=True).to(device)
accuracy_total += y_pred.eq(y.view_as(y_pred)).sum().item()
loss_avg = loss_total / len(data_loader.dataset)
accuracy_avg = 100.0 * accuracy_total / len(data_loader.dataset)
return {'loss' : loss_avg, 'accuracy' : accuracy_avg}
我使用GeForce MX250
作为GPU
答案 0 :(得分:0)
该问题可能是因为正在计算渐变并将其存储在验证循环中。为了解决这个问题,也许最简单的方法是将验证调用包装在ActiveX control '8856f961-340a-11d0-a96b-00c04fd705a2' cannot be instantiated because the current thread is not in a single-threaded apartment.
上下文中:
no_grad
如果愿意,还可以用with torch.no_grad():
valid_metrics = validate_single_epoch(model, loss_function, valid_loader)
装饰validate_single_epoch(...)
:
@torch.no_grad()
与您的问题无关,但请注意,在验证期间您正在训练模式下使用模型,这可能不是您想要的。验证功能中可能缺少对@torch.no_grad()
def validate_single_epoch(...):
# ...
的调用。