如何在R中创建年龄范围表

时间:2020-10-13 06:29:23

标签: r

我有一个来自阿尔茨海默氏病患者的数据框。我想创建一个表格,其中包含iid <75,每个age_at_onset <70,<70,1,2,3的患者人数(由患者ID:status表示) ),每个Ethnicity。如何在R中执行此操作?

df <- structure(list(iid = structure(c(`5068` = 80L, `15562` = 58L, 
`8939` = 52L, `17602` = 34L, `3173` = 40L, `12591` = 30L, `17391` = 97L, 
`8241` = 93L, `9746` = 10L, `9673` = 7L, `16594` = 29L, `16911` = 60L, 
`4796` = 18L, `6598` = 12L, `11462` = 26L, `16425` = 17L, `12698` = 37L, 
`17118` = 81L, `1501` = 76L, `13294` = 92L, `8072` = 84L, `11642` = 46L, 
`4164` = 85L, `9035` = 62L, `16691` = 35L, `16002` = 86L, `3915` = 21L, 
`7409` = 54L, `9759` = 11L, `6130` = 6L, `15153` = 23L, `13539` = 100L, 
`13262` = 87L, `742` = 28L, `17592` = 33L, `16812` = 53L, `213` = 66L, 
`11963` = 77L, `12093` = 89L, `11910` = 68L, `15813` = 73L, `1104` = 51L, 
`1966` = 95L, `5589` = 61L, `8860` = 41L, `482` = 16L, `3967` = 55L, 
`5869` = 1L, `12435` = 20L, `11675` = 50L, `16701` = 36L, `5893` = 2L, 
`16880` = 57L, `13290` = 90L, `1097` = 49L, `1476` = 71L, `9100` = 67L, 
`6220` = 8L, `15393` = 42L, `16631` = 31L, `9641` = 4L, `13485` = 99L, 
`1028` = 44L, `8200` = 91L, `12190` = 94L, `5581` = 19L, `7266` = 43L, 
`12254` = 98L, `15763` = 69L, `17764` = 79L, `16239` = 96L, `7548` = 59L, 
`12037` = 83L, `7813` = 70L, `12943` = 63L, `17748` = 75L, `12703` = 38L, 
`11964` = 78L, `14018` = 45L, `1769` = 88L, `13713` = 22L, `13100` = 74L, 
`13866` = 32L, `2527` = 25L, `2281` = 15L, `4463` = 39L, `5815` = 14L, 
`14040` = 47L, `16560` = 24L, `12887` = 56L, `11167` = 13L, `6123` = 5L, 
`5668` = 48L, `3036` = 82L, `7622` = 65L, `11470` = 27L, `4770` = 64L, 
`17050` = 72L, `6295` = 9L, `9575` = 3L), .Label = c("08AD09051_NACC295883", 
"08AD10766_NACC977458", "08AD9133", "09AD14006", "09AD14313_NACC904765", 
"09AD14360_NACC785663", "09AD14874", "09AD14943_NACC009736", 
"09AD15417_NACC169039", "09AD15778", "09AD15810", "09AD17022_NACC426380", 
"25795", "NACC026302", "NACC026743", "NACC044624", "NACC062886", 
"NACC083669", "NACC088187", "NACC094571", "NACC107551", "NACC134929", 
"NACC178119", "NACC178349", "NACC183751", "NACC186606", "NACC192719", 
"NACC193548", "NACC209758", "NACC224665", "NACC243923", "NACC246256", 
"NACC261383", "NACC283729", "NACC298544", "NACC305567", "NACC310219", 
"NACC310896", "NACC312856", "NACC336802", "NACC342957", "NACC350799", 
"NACC351234_09AD13080", "NACC355338", "NACC355951", "NACC361682", 
"NACC369873", "NACC397276", "NACC402765", "NACC403144", "NACC407162", 
"NACC412031", "NACC413408", "NACC422516_08AD10849", "NACC436908", 
"NACC465387", "NACC472288", "NACC479723", "NACC485644_08AD8204", 
"NACC504120", "NACC508353", "NACC509594", "NACC510498", "NACC519864", 
"NACC521718_08AD9198", "NACC559675", "NACC585997", "NACC605438", 
"NACC612578", "NACC619036_09AD14621", "NACC621261", "NACC634809", 
"NACC635885", "NACC639654", "NACC640099", "NACC642393", "NACC660918", 
"NACC660981", "NACC684037", "NACC690933", "NACC695603", "NACC703758", 
"NACC740374", "NACC744168_08AD7716", "NACC766835", "NACC769330", 
"NACC775129", "NACC792439", "NACC796641", "NACC805995", "NACC806269_09AD13056", 
"NACC809589", "NACC824113_08AD9038", "NACC884140", "NACC916661", 
"NACC921664", "NACC926195", "NACC929277", "NACC959601", "NACC992086"
), class = "factor"), omit = structure(c(`5068` = 1L, `15562` = 1L, 
`8939` = 1L, `17602` = 1L, `3173` = 1L, `12591` = 2L, `17391` = 1L, 
`8241` = 1L, `9746` = 1L, `9673` = 2L, `16594` = 2L, `16911` = 2L, 
`4796` = 1L, `6598` = 2L, `11462` = 1L, `16425` = 1L, `12698` = 1L, 
`17118` = 1L, `1501` = 1L, `13294` = 1L, `8072` = 1L, `11642` = 2L, 
`4164` = 1L, `9035` = 1L, `16691` = 1L, `16002` = 1L, `3915` = 1L, 
`7409` = 1L, `9759` = 1L, `6130` = 1L, `15153` = 1L, `13539` = 2L, 
`13262` = 1L, `742` = 2L, `17592` = 1L, `16812` = 1L, `213` = 2L, 
`11963` = 2L, `12093` = 2L, `11910` = 2L, `15813` = 1L, `1104` = 1L, 
`1966` = 1L, `5589` = 1L, `8860` = 1L, `482` = 1L, `3967` = 1L, 
`5869` = 2L, `12435` = 1L, `11675` = 2L, `16701` = 1L, `5893` = 1L, 
`16880` = 2L, `13290` = 2L, `1097` = 1L, `1476` = 1L, `9100` = 1L, 
`6220` = 1L, `15393` = 1L, `16631` = 1L, `9641` = 1L, `13485` = 2L, 
`1028` = 1L, `8200` = 2L, `12190` = 1L, `5581` = 2L, `7266` = 1L, 
`12254` = 1L, `15763` = 1L, `17764` = 1L, `16239` = 1L, `7548` = 1L, 
`12037` = 1L, `7813` = 1L, `12943` = 2L, `17748` = 1L, `12703` = 1L, 
`11964` = 1L, `14018` = 1L, `1769` = 1L, `13713` = 1L, `13100` = 1L, 
`13866` = 2L, `2527` = 1L, `2281` = 1L, `4463` = 1L, `5815` = 1L, 
`14040` = 1L, `16560` = 2L, `12887` = 1L, `11167` = 2L, `6123` = 2L, 
`5668` = 1L, `3036` = 1L, `7622` = 1L, `11470` = 1L, `4770` = 1L, 
`17050` = 2L, `6295` = 2L, `9575` = 1L), .Label = c("0", "1"), class = "factor"), 
    sex = structure(c(1L, 1L, 1L, 2L, 1L, NA, 2L, 2L, 1L, NA, 
    2L, 2L, 1L, NA, 2L, 2L, 2L, 2L, 2L, 2L, 2L, NA, 2L, 1L, 1L, 
    2L, 2L, 2L, 1L, 1L, 2L, NA, 2L, 2L, 1L, 2L, 2L, NA, NA, NA, 
    2L, 1L, 2L, 1L, 1L, 2L, 2L, NA, 2L, NA, 1L, 2L, 1L, NA, 2L, 
    1L, 2L, 2L, 2L, 2L, 1L, NA, 2L, NA, 2L, 2L, 2L, 2L, 2L, 1L, 
    2L, 2L, 2L, 1L, NA, 2L, 2L, 1L, 2L, 1L, 1L, 2L, NA, 1L, 2L, 
    1L, 2L, 2L, 1L, 1L, NA, NA, 1L, 1L, 2L, 2L, 2L, 2L, NA, 2L
    ), .Label = c(" 1", " 2", "-9"), class = "factor"), status = structure(c(2L, 
    2L, 2L, 1L, 3L, NA, 2L, 2L, 2L, NA, 2L, NA, 1L, NA, 2L, 1L, 
    1L, 1L, 2L, 1L, 2L, NA, 3L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 
    NA, 1L, 2L, 2L, 2L, NA, NA, NA, NA, 2L, 1L, 1L, 3L, 2L, 1L, 
    3L, NA, 1L, NA, 2L, 1L, NA, NA, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 
    NA, 1L, NA, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, NA, 1L, 
    1L, 2L, 2L, 2L, 1L, 1L, NA, 3L, 1L, 3L, 3L, 1L, NA, 2L, NA, 
    NA, 3L, 2L, 2L, 1L, 2L, 2L, NA, 2L), .Label = c(" 1", " 2", 
    " 3", "-9"), class = "factor"), age_at_onset = structure(c(`5068` = 4L, 
    `15562` = 16L, `8939` = 24L, `17602` = NA, `3173` = 24L, 
    `12591` = NA, `17391` = 15L, `8241` = 13L, `9746` = 18L, 
    `9673` = NA, `16594` = 20L, `16911` = NA, `4796` = NA, `6598` = NA, 
    `11462` = 20L, `16425` = NA, `12698` = NA, `17118` = NA, 
    `1501` = 5L, `13294` = NA, `8072` = 11L, `11642` = NA, `4164` = 25L, 
    `9035` = NA, `16691` = NA, `16002` = NA, `3915` = NA, `7409` = 21L, 
    `9759` = 14L, `6130` = NA, `15153` = NA, `13539` = NA, `13262` = NA, 
    `742` = 26L, `17592` = 28L, `16812` = 9L, `213` = 14L, `11963` = NA, 
    `12093` = NA, `11910` = NA, `15813` = 10L, `1104` = NA, `1966` = NA, 
    `5589` = 16L, `8860` = 8L, `482` = NA, `3967` = 7L, `5869` = NA, 
    `12435` = NA, `11675` = NA, `16701` = 19L, `5893` = NA, `16880` = 22L, 
    `13290` = NA, `1097` = NA, `1476` = 7L, `9100` = 22L, `6220` = NA, 
    `15393` = NA, `16631` = NA, `9641` = NA, `13485` = NA, `1028` = NA, 
    `8200` = NA, `12190` = NA, `5581` = NA, `7266` = 17L, `12254` = 17L, 
    `15763` = NA, `17764` = 6L, `16239` = NA, `7548` = 14L, `12037` = 27L, 
    `7813` = 26L, `12943` = NA, `17748` = NA, `12703` = NA, `11964` = 20L, 
    `14018` = 23L, `1769` = 25L, `13713` = NA, `13100` = NA, 
    `13866` = NA, `2527` = 12L, `2281` = NA, `4463` = 1L, `5815` = 3L, 
    `14040` = NA, `16560` = NA, `12887` = 14L, `11167` = NA, 
    `6123` = NA, `5668` = 5L, `3036` = 2L, `7622` = 7L, `11470` = NA, 
    `4770` = 17L, `17050` = 15L, `6295` = NA, `9575` = 19L), .Label = c("44", 
    "52", "56", "58", "60", "61", "62", "64", "65", "66", "67", 
    "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", 
    "79", "80", "81", "82", "83", "88", "90"), class = "factor"), 
    age_last_visit = structure(c(`5068` = 8L, `15562` = 18L, 
    `8939` = 24L, `17602` = 16L, `3173` = 21L, `12591` = NA, 
    `17391` = 17L, `8241` = NA, `9746` = NA, `9673` = NA, `16594` = 25L, 
    `16911` = 4L, `4796` = 5L, `6598` = NA, `11462` = 21L, `16425` = 10L, 
    `12698` = 25L, `17118` = 12L, `1501` = 7L, `13294` = 9L, 
    `8072` = NA, `11642` = NA, `4164` = 21L, `9035` = 21L, `16691` = 3L, 
    `16002` = 14L, `3915` = 13L, `7409` = NA, `9759` = NA, `6130` = 25L, 
    `15153` = 22L, `13539` = NA, `13262` = 24L, `742` = 26L, 
    `17592` = 30L, `16812` = 9L, `213` = 11L, `11963` = NA, `12093` = NA, 
    `11910` = NA, `15813` = 10L, `1104` = 24L, `1966` = 14L, 
    `5589` = 18L, `8860` = 23L, `482` = 15L, `3967` = 7L, `5869` = NA, 
    `12435` = 6L, `11675` = NA, `16701` = 25L, `5893` = NA, `16880` = 20L, 
    `13290` = NA, `1097` = 8L, `1476` = 5L, `9100` = 28L, `6220` = 21L, 
    `15393` = 17L, `16631` = 9L, `9641` = 24L, `13485` = NA, 
    `1028` = 7L, `8200` = NA, `12190` = 8L, `5581` = 15L, `7266` = NA, 
    `12254` = 19L, `15763` = 7L, `17764` = 6L, `16239` = 11L, 
    `7548` = NA, `12037` = 29L, `7813` = NA, `12943` = NA, `17748` = 23L, 
    `12703` = 27L, `11964` = 23L, `14018` = 26L, `1769` = 24L, 
    `13713` = 13L, `13100` = 20L, `13866` = NA, `2527` = 13L, 
    `2281` = 21L, `4463` = 4L, `5815` = 3L, `14040` = 2L, `16560` = 14L, 
    `12887` = 24L, `11167` = NA, `6123` = NA, `5668` = 12L, `3036` = 1L, 
    `7622` = NA, `11470` = 18L, `4770` = 18L, `17050` = 18L, 
    `6295` = NA, `9575` = NA), .Label = c("59", "60", "61", "62", 
    "64", "65", "67", "68", "69", "70", "71", "72", "73", "74", 
    "75", "76", "77", "79", "80", "81", "82", "83", "84", "85", 
    "86", "89", "91", "92", "93", "94"), class = "factor"), age_at_death = structure(c(`5068` = 2L, 
    `15562` = NA, `8939` = NA, `17602` = NA, `3173` = NA, `12591` = NA, 
    `17391` = NA, `8241` = 10L, `9746` = 9L, `9673` = NA, `16594` = NA, 
    `16911` = NA, `4796` = NA, `6598` = NA, `11462` = NA, `16425` = NA, 
    `12698` = NA, `17118` = NA, `1501` = NA, `13294` = NA, `8072` = 6L, 
    `11642` = NA, `4164` = NA, `9035` = NA, `16691` = NA, `16002` = NA, 
    `3915` = NA, `7409` = 16L, `9759` = 8L, `6130` = NA, `15153` = NA, 
    `13539` = NA, `13262` = NA, `742` = 14L, `17592` = NA, `16812` = NA, 
    `213` = NA, `11963` = NA, `12093` = NA, `11910` = NA, `15813` = NA, 
    `1104` = NA, `1966` = NA, `5589` = NA, `8860` = NA, `482` = NA, 
    `3967` = NA, `5869` = NA, `12435` = NA, `11675` = NA, `16701` = NA, 
    `5893` = 16L, `16880` = NA, `13290` = NA, `1097` = NA, `1476` = 1L, 
    `9100` = NA, `6220` = NA, `15393` = NA, `16631` = NA, `9641` = NA, 
    `13485` = NA, `1028` = NA, `8200` = NA, `12190` = NA, `5581` = NA, 
    `7266` = 11L, `12254` = NA, `15763` = NA, `17764` = 3L, `16239` = NA, 
    `7548` = 6L, `12037` = 15L, `7813` = 13L, `12943` = NA, `17748` = NA, 
    `12703` = NA, `11964` = NA, `14018` = NA, `1769` = 12L, `13713` = NA, 
    `13100` = NA, `13866` = NA, `2527` = 5L, `2281` = NA, `4463` = NA, 
    `5815` = NA, `14040` = NA, `16560` = NA, `12887` = NA, `11167` = NA, 
    `6123` = NA, `5668` = NA, `3036` = NA, `7622` = 4L, `11470` = NA, 
    `4770` = NA, `17050` = NA, `6295` = NA, `9575` = 7L), .Label = c("66", 
    "70", "71", "73", "74", "75", "77", "79", "82", "83", "85", 
    "86", "88", "90", "93", "94"), class = "factor"), aaoaae = structure(c(3L, 
    16L, 24L, 19L, 25L, NA, 15L, 13L, 18L, NA, 20L, 6L, 7L, NA, 
    20L, 13L, 29L, 15L, 4L, 12L, 10L, NA, 25L, NA, 5L, 17L, 16L, 
    21L, 14L, 29L, 26L, NA, 28L, 26L, 31L, 8L, 14L, NA, NA, NA, 
    9L, 28L, 17L, 22L, 7L, 18L, 10L, NA, 8L, NA, 19L, 33L, 24L, 
    NA, 11L, 6L, 22L, 25L, 20L, 12L, NA, NA, 10L, NA, 11L, 18L, 
    17L, 17L, 10L, 5L, 14L, 14L, 30L, 26L, NA, 27L, 32L, 20L, 
    23L, 25L, 16L, 24L, NA, 16L, 25L, 6L, 5L, 4L, 17L, 14L, NA, 
    NA, 15L, 2L, 6L, 22L, 17L, 15L, NA, 19L), .Label = c("-9", 
    "52", "58", "60", "61", "62", "64", "65", "66", "67", "68", 
    "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", 
    "79", "80", "81", "82", "83", "84", "85", "86", "88", "90", 
    "91", "94"), class = "factor"), aaoaae2 = structure(c(3L, 
    16L, 24L, 19L, 25L, NA, 15L, 13L, 18L, NA, 20L, 6L, 7L, NA, 
    20L, 13L, 29L, 15L, 4L, 12L, 10L, NA, 25L, NA, 5L, 17L, 16L, 
    21L, 14L, 29L, 26L, NA, 28L, 26L, 31L, 8L, 14L, NA, NA, NA, 
    9L, 28L, 17L, 22L, 7L, 18L, 10L, NA, 8L, NA, 19L, 33L, 24L, 
    NA, 11L, 6L, 22L, 25L, 20L, 12L, NA, NA, 10L, NA, 11L, 18L, 
    17L, 17L, 10L, 5L, 14L, 14L, 30L, 26L, NA, 27L, 32L, 20L, 
    23L, 25L, 16L, 24L, NA, 16L, 25L, 6L, 5L, 4L, 17L, 14L, NA, 
    NA, 15L, 2L, 6L, 22L, 17L, 15L, NA, 19L), .Label = c("-9", 
    "52", "58", "60", "61", "62", "64", "65", "66", "67", "68", 
    "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", 
    "79", "80", "81", "82", "83", "84", "85", "86", "88", "90", 
    "91", "94"), class = "factor"), apoe_1 = structure(c(3L, 
    3L, 3L, 3L, 3L, NA, 3L, 3L, 3L, NA, 3L, 2L, 3L, NA, 3L, 2L, 
    3L, 4L, 4L, 3L, 3L, NA, 4L, 3L, 3L, 3L, 3L, 3L, 3L, NA, 2L, 
    NA, 3L, 3L, 2L, 4L, 4L, NA, NA, NA, 4L, 3L, 4L, 2L, NA, 3L, 
    4L, NA, 3L, NA, 4L, 3L, 2L, NA, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 
    NA, 3L, NA, 4L, 3L, 3L, 3L, 3L, 4L, 3L, 3L, 3L, 3L, NA, 3L, 
    3L, 4L, 3L, 3L, 3L, 3L, NA, 3L, 3L, 3L, 3L, 3L, 3L, 3L, NA, 
    NA, 3L, 3L, 3L, 3L, 3L, 4L, NA, 4L), .Label = c("-9", "2", 
    "3", "4"), class = "factor"), apoe_2 = structure(c(4L, 4L, 
    3L, 3L, 3L, NA, 4L, 4L, 4L, NA, 3L, 3L, 3L, NA, 4L, 3L, 3L, 
    4L, 4L, 3L, 4L, NA, 2L, 4L, 3L, 4L, 3L, 4L, 3L, NA, 3L, NA, 
    3L, 3L, 3L, 4L, 2L, NA, NA, NA, 2L, 3L, 3L, 3L, NA, 3L, 3L, 
    NA, 3L, NA, 3L, 3L, 2L, NA, 3L, 4L, 4L, 4L, 3L, 4L, 4L, NA, 
    4L, NA, 2L, 3L, 3L, 3L, 4L, 3L, 2L, 4L, 4L, 3L, NA, 3L, 3L, 
    4L, 3L, 3L, 4L, 3L, NA, 3L, 3L, 2L, 3L, 2L, 3L, 4L, NA, NA, 
    2L, 4L, 3L, 4L, 2L, 3L, NA, 4L), .Label = c("-9", "2", "3", 
    "4"), class = "factor"), apoe4any = structure(c(3L, 3L, 2L, 
    2L, 2L, NA, 3L, 3L, 3L, NA, 2L, 2L, 2L, NA, 3L, 2L, 2L, 3L, 
    3L, 2L, 3L, NA, 3L, 3L, 2L, 3L, 2L, 3L, 2L, NA, 2L, NA, 2L, 
    2L, 2L, 3L, 3L, NA, NA, NA, 3L, 2L, 3L, 2L, NA, 2L, 3L, NA, 
    2L, NA, 3L, 2L, 2L, NA, 3L, 3L, 3L, 3L, 2L, 3L, 3L, NA, 3L, 
    NA, 3L, 2L, 2L, 2L, 3L, 3L, 2L, 3L, 3L, 2L, NA, 2L, 2L, 3L, 
    2L, 2L, 3L, 2L, NA, 2L, 2L, 2L, 2L, 2L, 2L, 3L, NA, NA, 2L, 
    3L, 2L, 3L, 2L, 3L, NA, 3L), .Label = c("-9", "0", "1"), class = "factor"), 
    apoe4dose = structure(c(3L, 3L, 2L, 2L, 2L, NA, 3L, 3L, 3L, 
    NA, 2L, 2L, 2L, NA, 3L, 2L, 2L, 4L, 4L, 2L, 3L, NA, 3L, 3L, 
    2L, 3L, 2L, 3L, 2L, NA, 2L, NA, 2L, 2L, 2L, 4L, 3L, NA, NA, 
    NA, 3L, 2L, 3L, 2L, NA, 2L, 3L, NA, 2L, NA, 3L, 2L, 2L, NA, 
    3L, 3L, 3L, 3L, 2L, 3L, 3L, NA, 3L, NA, 3L, 2L, 2L, 2L, 3L, 
    3L, 2L, 3L, 3L, 2L, NA, 2L, 2L, 4L, 2L, 2L, 3L, 2L, NA, 2L, 
    2L, 2L, 2L, 2L, 2L, 3L, NA, NA, 2L, 3L, 2L, 3L, 2L, 3L, NA, 
    4L), .Label = c("-9", "0", "1", "2"), class = "factor"), 
    Ethnicity = structure(c(`5068` = 4L, `15562` = 4L, `8939` = 4L, 
    `17602` = 3L, `3173` = 4L, `12591` = 4L, `17391` = 4L, `8241` = 4L, 
    `9746` = 4L, `9673` = 4L, `16594` = 4L, `16911` = 4L, `4796` = 4L, 
    `6598` = 4L, `11462` = 4L, `16425` = 4L, `12698` = 4L, `17118` = 4L, 
    `1501` = 4L, `13294` = 4L, `8072` = 4L, `11642` = 4L, `4164` = 1L, 
    `9035` = 4L, `16691` = 4L, `16002` = 4L, `3915` = 2L, `7409` = 4L, 
    `9759` = 4L, `6130` = 4L, `15153` = 4L, `13539` = 4L, `13262` = 4L, 
    `742` = 4L, `17592` = 3L, `16812` = 4L, `213` = 1L, `11963` = 4L, 
    `12093` = 4L, `11910` = 4L, `15813` = 4L, `1104` = 4L, `1966` = 4L, 
    `5589` = 1L, `8860` = 4L, `482` = 4L, `3967` = 4L, `5869` = 4L, 
    `12435` = 4L, `11675` = 4L, `16701` = 4L, `5893` = 4L, `16880` = 4L, 
    `13290` = 4L, `1097` = 4L, `1476` = 4L, `9100` = 4L, `6220` = 4L, 
    `15393` = 4L, `16631` = 4L, `9641` = 4L, `13485` = 4L, `1028` = 4L, 
    `8200` = 4L, `12190` = 4L, `5581` = 4L, `7266` = 4L, `12254` = 4L, 
    `15763` = 4L, `17764` = 3L, `16239` = 4L, `7548` = 4L, `12037` = 4L, 
    `7813` = 4L, `12943` = 4L, `17748` = 3L, `12703` = 4L, `11964` = 4L, 
    `14018` = 4L, `1769` = 4L, `13713` = 4L, `13100` = 4L, `13866` = 4L, 
    `2527` = 4L, `2281` = 2L, `4463` = 4L, `5815` = 4L, `14040` = 4L, 
    `16560` = 4L, `12887` = 4L, `11167` = 4L, `6123` = 4L, `5668` = 4L, 
    `3036` = 4L, `7622` = 4L, `11470` = 4L, `4770` = 2L, `17050` = 4L, 
    `6295` = 4L, `9575` = 4L), .Label = c("AA", "Asian", "Hispanic", 
    "NHW"), class = "factor")), row.names = c(NA, -100L), class = "data.frame")

3 个答案:

答案 0 :(得分:1)

我们可以按“状态”,“民族”进行分组,并获得逻辑向量的sum

library(dplyr)
df %>% 
    group_by(status, Ethnicity) %>%
    summarise(n_75 = sum(as.numeric(as.character(age_at_onset)) < 75, 
            na.rm = TRUE), 
            n_70= sum(as.numeric(as.character(age_at_onset)) < 70, 
            na.rm = TRUE) )

-输出

# A tibble: 10 x 4
# Groups:   status [4]
#   status Ethnicity  n_75  n_70
#   <fct>  <fct>     <int> <int>
# 1 " 1"   Asian         0     0
# 2 " 1"   Hispanic      0     0
# 3 " 1"   NHW           0     0
# 4 " 2"   Asian         1     0
# 5 " 2"   Hispanic      1     1
# 6 " 2"   NHW          18     9
# 7 " 3"   AA            1     0
# 8 " 3"   NHW           5     5
# 9  <NA>  AA            1     0
#10  <NA>  NHW           0     0

答案 1 :(得分:1)

这是工作:

> df %>% select(iid, age_at_onset, status, Ethnicity) %>% 
+          mutate(LT75 = ifelse(as.numeric(as.character(df$age_at_onset)) < 75, 1,0), LT70 = ifelse(as.numeric(as.character(df$age_at_onset)) < 70, 1,0)) %>% group_by(status, Ethnicity) %>% 
+                                                                 summarise(Lessthan75 = sum(LT75, na.rm = 1), Lessthan70 = sum(LT70, na.rm = 1))
`summarise()` regrouping output by 'status' (override with `.groups` argument)
# A tibble: 10 x 4
# Groups:   status [4]
   status Ethnicity Lessthan75 Lessthan70
   <fct>  <fct>          <dbl>      <dbl>
 1 " 1"   Asian              0          0
 2 " 1"   Hispanic           0          0
 3 " 1"   NHW                0          0
 4 " 2"   Asian              1          0
 5 " 2"   Hispanic           1          1
 6 " 2"   NHW               18          9
 7 " 3"   AA                 1          0
 8 " 3"   NHW                5          5
 9 NA     AA                 1          0
10 NA     NHW                0          0
> 

答案 2 :(得分:0)

您将age_at_onset作为因子,将其转换为数字,然后使用cut将数据划分到不同的存储桶中,并使用count计算每个存储桶中有多少iid

library(dplyr)

df %>%
  mutate(age_at_onset = as.numeric(as.character(age_at_onset)), 
         age_group = cut(age_at_onset, c(-Inf, 70, 75, Inf))) %>%
  count(Ethnicity, status, age_group)


#   Ethnicity status age_group  n
#1         AA      3   (70,75]  1
#2         AA      3 (75, Inf]  1
#3         AA   <NA>   (70,75]  1
#4      Asian      1      <NA>  2
#5      Asian      2   (70,75]  1
#6   Hispanic      1      <NA>  2
#7   Hispanic      2 (-Inf,70]  1
#8   Hispanic      2 (75, Inf]  1
#9        NHW      1      <NA> 29
#10       NHW      2 (-Inf,70] 10
#11       NHW      2   (70,75]  9
#12       NHW      2 (75, Inf] 13
#13       NHW      2      <NA>  2
#14       NHW      3 (-Inf,70]  5
#15       NHW      3 (75, Inf]  1
#16       NHW   <NA> (75, Inf]  1
#17       NHW   <NA>      <NA> 20

如果需要,您可以使用NAage_group列中的 filter(!is.na(age_group))值删除。