我已经使用Google Cloud Platform训练了AutoML Vision模型。我训练了特定于边缘的版本,因此可以将其部署在自己硬件上的docker映像中。
我按照此处的指导说明进行操作: https://cloud.google.com/vision/automl/docs/containers-gcs-tutorial
,并已使用示例python代码成功执行了一些预测:
import base64
import io
import json
import requests
def container_predict(image_file_path, image_key, port_number=8501):
"""Sends a prediction request to TFServing docker container REST API.
Args:
image_file_path: Path to a local image for the prediction request.
image_key: Your chosen string key to identify the given image.
port_number: The port number on your device to accept REST API calls.
Returns:
The response of the prediction request.
"""
with io.open(image_file_path, 'rb') as image_file:
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
# The example here only shows prediction with one image. You can extend it
# to predict with a batch of images indicated by different keys, which can
# make sure that the responses corresponding to the given image.
instances = {
'instances': [
{'image_bytes': {'b64': str(encoded_image)},
'key': image_key}
]
}
# This example shows sending requests in the same server that you start
# docker containers. If you would like to send requests to other servers,
# please change localhost to IP of other servers.
url = 'http://localhost:{}/v1/models/default:predict'.format(port_number)
response = requests.post(url, data=json.dumps(instances))
print(response.json())
但是,响应包含的预测比我想要的要多(即使我只希望5-10,也有40个预测)。我以为我可以向POST请求中添加一些参数,以限制预测的次数,或者根据对象检测得分进行过滤。此处概述了此类功能: https://cloud.google.com/automl/docs/reference/rest/v1/projects.locations.models/predict#request-body
该文档建议将score_threshold
或max_bounding_box_count
添加到请求json包中。
我尝试过这样的事情:
instances = {
'instances': [
{'image_bytes': {'b64': str(encoded_image)},
'key': key}
],
'params': [
{'max_bounding_box_count': 10}
]
}
无济于事。
有人知道如何向json请求有效内容添加参数吗?还是边缘部署的Docker甚至会接受它们?
答案 0 :(得分:0)
您应该尝试以下操作:
{
"instances":[
{
"image_bytes":{
"b64":"/9j/4AAQSkZJRgABAQ....ABAAD2P//Z"
},
"params":{
"maxBoundingBoxCount":"100"
}
}
]
}
此documentation显示了一个示例。
答案 1 :(得分:0)
只是想知道它是否有效我正在尝试与 docker score_threshold 类似的东西,而这不会给出格式错误响应仍然超过阈值
{
"instances": [
{
"image_bytes": {
"b64": "<base64 encoded image>"
},
"key": "your-chosen-image-key123"
}
],
"params": {
"score_threshold": 0.7
}
}