熊猫-用Nan代替重复并保留行

时间:2020-10-08 19:33:10

标签: python pandas

如何在保留行的同时用NaN替换每个组的重复项?

我需要保留行而不删除它,或者将第一个原始值保留在它首先显示的位置。

import pandas as pd
from datetime import timedelta

df = pd.DataFrame({
    'date': ['2019-01-01 00:00:00','2019-01-01 01:00:00','2019-01-01 02:00:00', '2019-01-01 03:00:00',
             '2019-09-01 02:00:00','2019-09-01 03:00:00','2019-09-01 04:00:00', '2019-09-01 05:00:00'],
    'value': [10,10,10,10,12,12,12,12],
    'ID': ['Jackie','Jackie','Jackie','Jackie','Zoop','Zoop','Zoop','Zoop',]
})

df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True)


date    value   ID
0   2019-01-01 00:00:00 10  Jackie
1   2019-01-01 01:00:00 10  Jackie
2   2019-01-01 02:00:00 10  Jackie
3   2019-01-01 03:00:00 10  Jackie
4   2019-09-01 02:00:00 12  Zoop
5   2019-09-01 03:00:00 12  Zoop
6   2019-09-01 04:00:00 12  Zoop
7   2019-09-01 05:00:00 12  Zoop

所需数据框:

date    value   ID
0   2019-01-01 00:00:00 10  Jackie
1   2019-01-01 01:00:00 NaN Jackie
2   2019-01-01 02:00:00 NaN Jackie
3   2019-01-01 03:00:00 NaN Jackie
4   2019-09-01 02:00:00 12  Zoop
5   2019-09-01 03:00:00 NaN Zoop
6   2019-09-01 04:00:00 NaN Zoop
7   2019-09-01 05:00:00 NaN Zoop

编辑:

重复的值只能在与频率无关的同一天删除。因此,如果值10在1月1日出现两次,在1月2日出现3次,则值10应该只在1月1日出现一次,而在1月2日出现一次。

3 个答案:

答案 0 :(得分:3)

我假设您检查valueID列的重复项,并进一步检查date列的date

df.loc[df.assign(d=df.date.dt.date).duplicated(['value','ID', 'd']), 'value'] = np.nan

Out[269]:
                 date  value      ID
0 2019-01-01 00:00:00   10.0  Jackie
1 2019-01-01 01:00:00    NaN  Jackie
2 2019-01-01 02:00:00    NaN  Jackie
3 2019-01-01 03:00:00    NaN  Jackie
4 2019-09-01 02:00:00   12.0    Zoop
5 2019-09-01 03:00:00    NaN    Zoop
6 2019-09-01 04:00:00    NaN    Zoop
7 2019-09-01 05:00:00    NaN    Zoop

正如@Trenton建议的那样,您可以使用pd.NA来避免导入numpy

注意:如@rafaelc建议:这是链接,说明pd.NAnp.nan https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.0.0.html#experimental-na-scalar-to-denote-missing-values之间的详细区别)

df.loc[df.assign(d=df.date.dt.date).duplicated(['value','ID', 'd']), 'value'] = pd.NA

Out[273]:
                 date value      ID
0 2019-01-01 00:00:00    10  Jackie
1 2019-01-01 01:00:00  <NA>  Jackie
2 2019-01-01 02:00:00  <NA>  Jackie
3 2019-01-01 03:00:00  <NA>  Jackie
4 2019-09-01 02:00:00    12    Zoop
5 2019-09-01 03:00:00  <NA>    Zoop
6 2019-09-01 04:00:00  <NA>    Zoop
7 2019-09-01 05:00:00  <NA>    Zoop

答案 1 :(得分:1)

如果对数据框进行排序,则可以正常工作-如您的示例:

import numpy as np                                    # to be used for np.nan

df['duplicate'] = df['value'].shift(1)                # create a duplicate column 
df['value'] = df.apply(lambda x: np.nan if x['value'] == x['duplicate'] \
                          else x['value'], axis=1)    # conditional replace
df = df.drop('duplicate', axis=1)                     # drop helper column

答案 2 :(得分:1)

对日期进行分组,并获取第一个观察值(按时间排序时不一定是第一个),然后将结果合并回原始数据框。

df2 = df.groupby([df['date'].dt.date, 'ID'], as_index=False).first()
>>> df.drop(columns='value').merge(df2, on=['date', 'ID'], how='left')[df.columns]
                 date  value      ID
0 2019-01-01 00:00:00   10.0  Jackie
1 2019-01-01 01:00:00    NaN  Jackie
2 2019-01-01 02:00:00    NaN  Jackie
3 2019-01-01 03:00:00    NaN  Jackie
4 2019-09-01 02:00:00   12.0    Zoop
5 2019-09-01 03:00:00    NaN    Zoop
6 2019-09-01 04:00:00    NaN    Zoop
7 2019-09-01 05:00:00    NaN    Zoop