我有一个数据框,我想使用相邻列中的数据将一列中的值转换为新列。 df$species
中的每个因素都将成为一个新列,新列中的数据将是df$fish_num
中的相应数据,但是,我对于如何执行此操作确实感到困惑,不要这样做。不知道从哪里开始!
这是我当前的df:
site treatment section species fish_num
1 Site 1 Control A parr 7
2 Site 1 Control A salmon 6
3 Site 1 Control B trout 4
4 Site 1 Control B salmon 12
5 Site 1 Treatment A parr 8
6 Site 1 Treatment A salmon 5
7 Site 1 Treatment B trout 15
8 Site 1 Treatment B salmon 9
df <- structure(list(site = c("Site 1", "Site 1", "Site 1", "Site 1",
"Site 1", "Site 1", "Site 1", "Site 1"), treatment = c("Control",
"Control", "Control", "Control", "Treatment", "Treatment", "Treatment",
"Treatment"), section = c("A", "A", "B", "B", "A", "A", "B",
"B"), species = c("parr", "salmon", "trout", "salmon", "parr",
"salmon", "trout", "salmon"), fish_num = c(7L, 6L, 4L, 12L, 8L,
5L, 15L, 9L)), class = "data.frame", row.names = c("1", "2",
"3", "4", "5", "6", "7", "8"))
我希望能够产生以下内容:
site treatment section fish_num parr salmon trout
1 Site 1 Control A 7 7 0 0
2 Site 1 Control A 6 0 6 0
3 Site 1 Control B 4 0 0 4
4 Site 1 Control B 12 0 12 0
5 Site 1 Treatment A 8 8 0 0
6 Site 1 Treatment A 5 0 5 0
7 Site 1 Treatment B 15 0 0 15
8 Site 1 Treatment B 9 0 9 0
我不确定最好的方法!
答案 0 :(得分:2)
一种方法是使用pivot_wider()
中的tidyr
,如果您想留在tidyverse中。我还向mutate_at()
和mutate()
添加了调用,以用零替换缺失值并计算列fish_num
。
library(tidyverse)
df %>%
pivot_wider(names_from = species,
values_from = fish_num) %>%
mutate_at(c("parr", "salmon", "trout"), ~replace(., is.na(.), 0)) %>%
mutate(fish_num = parr+salmon+trout)
# A tibble: 4 x 7
site treatment section parr salmon trout fish_num
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 Site 1 Control A 7 6 0 13
2 Site 1 Control B 0 12 4 16
3 Site 1 Treatment A 8 5 0 13
4 Site 1 Treatment B 0 9 15 24
答案 1 :(得分:1)
使用tidyverse
的{{1}}
pivot_wider
答案 2 :(得分:1)
您可以使用以下技巧:R中的TRUE和FALSE分别代表零和一:
- name: 'gcr.io/cloud-builders/gcloud'
id: scheduler
waitFor: ['sensor']
entrypoint: bash
args:
- '-c'
- |
gcloud scheduler jobs create http NAME --schedule="* * * * *" --uri="uri" || echo "Scheduler email-sensor already exist";
要对所有出现的物种执行此操作,请将其循环放在df$salmon <- df$fish_num * (df$species == "salmon")
df$trout <- df$fish_num * (df$species == "trout")
上。
答案 3 :(得分:1)
一个简单的基本R选项正在使用xtabs
cbind(df,unclass(t(xtabs(fish_num ~species + q,cbind(df,q = 1:nrow(df))))))
给出
site treatment section species fish_num parr salmon trout
1 Site 1 Control A parr 7 7 0 0
2 Site 1 Control A salmon 6 0 6 0
3 Site 1 Control B trout 4 0 0 4
4 Site 1 Control B salmon 12 0 12 0
5 Site 1 Treatment A parr 8 8 0 0
6 Site 1 Treatment A salmon 5 0 5 0
7 Site 1 Treatment B trout 15 0 0 15
8 Site 1 Treatment B salmon 9 0 9 0
数据
> dput(df)
structure(list(site = c("Site 1", "Site 1", "Site 1", "Site 1",
"Site 1", "Site 1", "Site 1", "Site 1"), treatment = c("Control",
"Control", "Control", "Control", "Treatment", "Treatment", "Treatment",
"Treatment"), section = c("A", "A", "B", "B", "A", "A", "B",
"B"), species = c("parr", "salmon", "trout", "salmon", "parr",
"salmon", "trout", "salmon"), fish_num = c(7L, 6L, 4L, 12L, 8L,
5L, 15L, 9L)), class = "data.frame", row.names = c("1", "2",
"3", "4", "5", "6", "7", "8"))