在个人系统上训练VAE模型时出错

时间:2020-10-03 13:21:07

标签: tensorflow machine-learning

在我的系统上使用OpenAI Gym的“ CarRacing-v0”环境训练VAE时,调用.fit函数时出错。相同的模型在Google Colab上训练得很好。

下面显示的错误

Track generation: 1077..1354 -> 277-tiles track
EPISODE: 0
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-22-c9f30896c44b> in <module>
     14 
     15       vae_train_data = batch(STORAGE)
---> 16       vae.fit(vae_train_data, vae_train_data, batch_size=step, epochs =1)
     17       STORAGE.clear()
     18 

 ~\anaconda3\envs\new\lib\site-packages\tensorflow_core\python\keras\engine\training.py in 
fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, 
class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, 
max_queue_size, workers, use_multiprocessing, **kwargs)
    726         max_queue_size=max_queue_size,
    727         workers=workers,
--> 728         use_multiprocessing=use_multiprocessing)
    729 
    730   def evaluate(self,

~\anaconda3\envs\new\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in 
fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, 
shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, 
validation_freq, **kwargs)
    222           validation_data=validation_data,
    223           validation_steps=validation_steps,
--> 224           distribution_strategy=strategy)
    225 
    226       total_samples = _get_total_number_of_samples(training_data_adapter)

~\anaconda3\envs\new\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in _ 
process_training_inputs(model, x, y, batch_size, epochs, sample_weights, class_weights, 
steps_per_epoch, validation_split, validation_data, validation_steps, shuffle, distribution_strategy, 
max_queue_size, workers, use_multiprocessing)
    545         max_queue_size=max_queue_size,
    546         workers=workers,
--> 547         use_multiprocessing=use_multiprocessing)
    548     val_adapter = None
    549     if validation_data:

~\anaconda3\envs\new\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in 
_process_inputs(model, x, y, batch_size, epochs, sample_weights, class_weights, shuffle, steps, 
 distribution_strategy, max_queue_size, workers, use_multiprocessing)
     592         batch_size=batch_size,
     593         check_steps=False,
 --> 594         steps=steps)
     595   adapter = adapter_cls(
     596       x,

 ~\anaconda3\envs\new\lib\site-packages\tensorflow_core\python\keras\engine\training.py in 
 _standardize_user_data(self, x, y, sample_weight, class_weight, batch_size, check_steps, steps_name, 
 steps, validation_split, shuffle, extract_tensors_from_dataset)
    2517           shapes=None,
    2518           check_batch_axis=False,  # Don't enforce the batch size.
 -> 2519           exception_prefix='target')
    2520 
    2521       # Generate sample-wise weight values given the `sample_weight` and

 ~\anaconda3\envs\new\lib\site-packages\tensorflow_core\python\keras\engine\training_utils.py in 
 standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
     487       raise ValueError(
     488           'Error when checking model ' + exception_prefix + ': '
 --> 489           'expected no data, but got:', data)
     490     return []
     491   if data is None:

      ValueError: ('Error when checking model target: expected no data, but got:', array([[[[0.        
        , 0.        , 0.        ],
       [0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        ],
       ...,

我很好奇:这个问题与张量流的不同版本的使用有关吗?我正在使用Tensorflow-gpu 2.0

0 个答案:

没有答案